Ethanolic extract of Camellia sinensise licited hypoglycemic but lacked antimalarial properties in Plasmodium berghei-infected diabetic mice
Click to view file (PDF)

How to Cite

Akinwunmi, M. T. ., Adisa, R. A. ., Aroyeun, S. O. ., & Ademowo, O. G. (2021). Ethanolic extract of Camellia sinensise licited hypoglycemic but lacked antimalarial properties in Plasmodium berghei-infected diabetic mice. Nigerian Journal of Physiological Sciences, 36(2), 189–194. https://doi.org/10.54548/njps.v36i2.7

Abstract

The in vivo antimalarial and antidiabetic activity of extract of Camellia sinensis (ECS) in alloxan-induced diabetic and Plasmodium berghei-infected mice were investigated. Eighty-four BALB/c mice divided into sets 1 & 2 infected with P. berghei and 2 & 3 injected with alloxan received either distilled water, ECS (300mg/kg), Chloroquine (CQ-10mg/kg) or Metformin (250mg/kg). Results showed significant increases (p<0.05) in percentage parasitaemia of P. berghei-infected mice treated with ECS and P. berghei-diabetic mice. Furthermore, ECS significantly decreased (p<0.05) blood glucose and PCV in diabetic and P. berghei-diabetic mice.  ECS regenerated pancreatic islet cells in P. berghei-infected-diabetes but lacked appreciable antimalarial activity

https://doi.org/10.54548/njps.v36i2.7
Click to view file (PDF)

References

Moodley K, Joseph K, Naidoo Y, Islam S, Mackraj I. (2015) Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea Harv. (Wild Garlic) Rhizome methanol extract in a diabetic rat model. BMC Complement Altern Med.15:408.

Alwan A. (2010) Global status report on non-communicable diseases. Geneva: World Health Organization 2011.

Whiting DRL. Guariguata CW and Shaw J. (2011) IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice. ;94: 311–321.http://dx.doi.org/10.1016/j.diabres.2011.10.029

Kim TJ, Davis AJ, Zhang X, He and Mathews ST. (2009) Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochemical and Biophysical Research Communications. 388: 377-382. http://dx.doi.org/10.1016/j.bbrc.2009.08.018

Pistrosch FX, Ganz SR,Bornstein AL,Birkenfeld E, Henkel Eand Hanefeld M. (2015) Risk of and risk factors for hypoglycemia and associated arrhythmias in patients with type 2 diabetes and cardiovascular disease: A cohort study under real-world conditions. Acta Diabetologica 52: 889–895. doi:10.1007/s00592-015-0727-y

RutterMK and Nesto RW. (2011) Blood pressure, lipids and glucose in type 2 diabetes: How low should we go? Re-discovering personalized care. European Heart Journal 32: 2247–2255. http://dx.doi.org/10.1093/eurheartj/ehr154

Chow E, Ozols DJ, Nikolic-Paterson, RC, Atkins and Tesch GH. (2004) Macrophages in mouse type 2 diabeticnephropathy: Correlation with diabetic state and progressive renal injury. Kidney International 65: 116–128. http://dx.doi.org/10.1111/j.1523-1755.2004.00367.x

Lopes de Faria JBL, Silva KC, & Lopes de Faria JML. (2011) The contribution of hypertension to diabetic nephropathy and retinopathy: The role of inflammation and oxidative stress. Hypertension Research 34: 413–422. http://dx.doi.org/10.1038/hr.2010.263

Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H. (2017) Green tea and its anti-angiogenesis effects. Biomed. Pharmacother. 89: 949–956. doi: 10.1016/j.biopha.2017.01.161

Jayashree GV, Krupashree K, Rachitha P, Khanum F. (2017) Patulin induced oxidative stress mediated apoptotic damage in mice, and its modulation by Green tea leaves (GTL) J. Clin. Exp. Hepatol. 7:127–134. doi: 10.1016/j.jceh.2017.01.113

Nibir YM, Sumit AF, Akhand AA, Ahsan N, Hossain MS. (2017) Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac. J. Trop. Biomed. 7:352–357. doi: 10.1016/j.apjtb.2017.01.005

Bai Q, Lyu Z, Yang X, Pan Z, Lou J, Dong T. (2017) Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke. Behav. Brain Res. 321:79–86. doi: 10.1016/j.bbr.2016.12.037.

Ben P, Zhang Z, Zhu Y, Xiong A, Gao Y, Mu J, Yin Z, Luo L. (2016) l-Theanine attenuates cadmium-induced neurotoxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Neurotoxicology. 57: 95–103. doi: 10.1016/j.neuro.2016.09.010

Burkard M, Leischner C, Lauer UM, Busch C, Venturelli S, Frank J. (2017) Dietary flavonoids and modulation of natural killer cells: implications in malignant and viral diseases. J Nutr Biochem. 46:1-12.

Peixoto EB, Papadimitriou A, Teixeira DA, Montemurro C, Duarte DA, Silva KC, Joazeiro PP, Lopes de Faria JM, Lopes de Faria JB. (2015) Reduced LRP6 expression and increase in the interaction of GSK3β with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea. J Nutr Biochem. 26(4):416-30.

Sampath C, Rashid MR, Sang S, Ahmedna M. (2017) Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother. 87:73-81.

Pournourmohammadi S, Grimaldi M, Stridh MH, Lavallard V, Waagepetersen HS, Wollheim CB, Maechler P. (2017) Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state? Int J Biochem Cell Biol. 88:220-225.

Nomura SM, Monobe KE, Matsunaga A, Maeda-Yamamoto M, & Horie H. (2015) Effects of flavonol-rich green tea (Camellia sinensis L. cv. Sofu) on blood glucose and insulin levels in diabetic mice. Integrative Obesity and Diabetes 1: 109–111

Sannella AR, Messori L, Casini A, VincieriF, Bilia AR Majori G, et al. (2007) Antimalarial properties of green tea. Biochem. Biophys. Res. Commun. 353:177–81.

Babu B, Jisha VK, Salitha CV, Mohamed S and Valsa AK. (2002) Antimicrobial activity of different plant extracts. Indian J. Microbiol. 42:361-363.

Xi-Qun SH, Kai-Xun X, Hui-Bi. Influence of alloxan-induced diabetes and selenite treatment on blood glucose and glutathione levels in mice. (2005) J. Trace Elements in Med. and Biol. 18: 261–267.

Elased KM, Taverne J, Playfair JHL. (1996) Malaria, blood glucose, and the role of tumour necrosis factor (TNF) in mice. Clin. Exp. Immunol. 105:443-449.

Elased K, Playfair JHL. (1994) Hypoglycemia and hyperinsulinemia in rodent models of severe malaria infection. Infect. Immun. 62:5157–5160.

Taylor K, Carr R, Playfair JHL, et al. (1992) Malarial toxic antigens synergistically enhance insulin signalling. FEBS Lett. 311:231-234.

Taylor K, Bate CAW, Carr RA, Butcher GA, Taverne J, Playfair JHL. (1992) Phospholipids-containing toxic malaria antigens induce hypoglycaemia. Clin Exp Immunol. 90:1–5.

Sabu MC, Smitha K, Kuttan R. (2002) Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83: 109–116.

Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS. (2004) Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. J. Agric. Food Chem. 52 (3): 643–648.

Han Q, Yu Q-Y, Shi J, Xiong C-Y, Ling Z-J, He P-M. (2011) Molecular characterization and hypoglycemic activity of a novel water-soluble polysaccharide from tea (Camellia sinensis) flower. Carbohydr. Polym. 86:797–805. doi: 10.1016/j.carbpol.2011.05.039

Sun L, Warren FJ, Netzel G, Gidley MJ. (2016) 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols. J. Funct. Foods 26:144–156. doi: 10.1016/j.jff.2016.07.012.

Elased K, de Souza JB, Playfair JHL. (1995) Blood-stage malaria infection in diabetic mice. Clin. Exp. Immunol. 99:440–444.

Olszewski KL, Llinás M. (2011) Central carbon metabolism of Plasmodium parasites. Mol Biochem Parasitol. 175(2):95-103. doi:10.1016/j.molbiopara.2010.09.001

Kirk K, Horner HA, Kirk J. (1996) Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol. 82(2):195-205.

Thipubon P, Tipsuwan W, Uthaipibull C, Santitherakul S, Srichairatanakool S. (2015) Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3- hydroxyl-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice. Asian Pacific Journal of Tropical Biomedicine 5(11): 932-936.

Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M. (2002) Epigallocatechin gallate, a constituent of green tea represses hepatic glucose production. J. Biol. Chem. 277: 34933–34940.

Kobayashi Y., M. Suzuki M, H. Satsu, S. Arai, Y. Hara, K. Suzuki, Y. Miyamaoto, M. Shimizu. (2000). Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J. Agric. Food Chem. 48:5618–5623.

Musial C, Kuban-Jankowska A., Gorska-Ponikowska M. (2020) Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 21: 1744

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Nigerian Journal of Physiological Sciences