Effect of Aqueous Extract of Hibiscus Sabdariffa on Cadmium Chloride-Induced Neurotoxicity in Male Wistar Rats
DOI:
https://doi.org/10.54548/njps.v39i1.14Keywords:
Neurotoxicity, Hibiscus Sabdariffa, Neuromuscular function, Cadmium, PhytochemicalsAbstract
This study investigated the neurologic effect of aqueous extract of Hibiscus sabdariffa on cadmium chloride-induced neurotoxicity in wistar rats. Thirty male wistar rats were grouped accordingly; Group A: control, Group B-F: CdCl2 0.3ml; H. sabdariffa 1.5ml; CdCl2 + H. sabdariffa 1.0ml; CdCl2 + H. sabdariffa 1.5ml; CdCl2 + H. sabdariffa 2ml, respectively. Gas chromatography coupled to flame ionization detector (GC-FID), total antioxidant capacity (TAC) and mineral analysis of H. sabdariffa was done to reveal the bioactive agents in the plant sample. Oxidative stress, muscle function markers and plasma electrolytes were assayed. Phytochemical screening revealed alkaloids, phytate, anthraquinone and flavonoids. The mineral analysis revealed predominantly, Mn, Ca, K and Fe. The biochemical results were in comparison with control and statistically significant at 95% confidence interval. There was an increase in SOD, CAT, GSH, GR and GPx in groups C-F, MDA decreased in group C, E and F while PC decreased in group C and F. There was a decrease in plasma creatine kinase in groups C to F and increase in AChE in group C. Ca and K levels had no significant change (P<0.05). Nitric oxide level had no significant change in group C, E and F, but increased in group D. This study demonstrated that H. sabdariffa has the potential to ameliorate the neurotoxicity caused by CdCl2 in wistar rats.
References
Ahmed, Z. S., & Abozed, S. S. (2015). Functional and antioxidant properties of novel snack crackers incorporated with Hibiscus sabdariffa by-product. Journal of Advanced Research, 6(1), 79–87. https://doi.org/10.1016/j.jare.2014.07.002
Alshami, I., & Ahmed E.A. (2014). Antimicrobial activity of Hibiscus sabdariffa extract against uropathogenic strains isolated from recurrent urinary tract infections. Asian Pacific Journal of Tropical Disease, 4(4), 317–322. https://doi.org/10.1016/s2222-1808(14)60581-8
Beltrán-Debón, R., Alonso-Villaverde, C., Aragonès, G., Rodríguez-Medina, I., Rull, A., Micol, V., Segura-Carretero, A., Fernández-Gutiérrez, A., Camps, J., and Joven, J. (2010). The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocyte chemoattractant protein-1 in humans. Phytomedicine, 17(3-4), 186–191. https://doi.org/10.1016/j.phymed.2009.08.006
Bizzozero, O. A. (2009). Protein Carbonylation in Neurodegenerative and Demyelinating CNS Diseases. Springer EBooks, 543–562. https://doi.org/10.1007/978-0-387-30375-8_23
Brown, L. S., Foster, C. G., Courtney, J.-M., King, N. E., Howells, D. W. and Sutherland, B. A. (2019). Pericytes and Neurovascular Function in the Healthy and Diseased Brain. Front Cell Neurosci , 13. https://doi.org/10.3389/fncel.2019.00282
Chatterjee, S., Kundu,, S., Sengupta, S. and Bhattacharyya, A. (2009). Divergence to apoptosis from ROS induced cell cycle arrest: effect of cadmium. Mutation Research, 663(1-2), 22-31. Doi: 10.1016/j.mrmmm.2008.12.011.
Chin-Chan, M., Navarro-Yepes, J. and Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience , 9, 124.
Chong , W., Jiménez , J., McIIvin , M., Saito , M. A., and Kwakye , G. F. (2017). α Synuclein enhances cadmium uptake and neurotoxicity via oxidative stress and caspase activated cell death mechanisms in a dopaminergic cell model of Parkinson’s disease. Neurotoxicity Research, 32, 231-246. Doi: 10.1007/s12640-017-9725-x.
Christer S. (2019). Electrolytes and Diuretics. Pharmacology and Physiology for Anesthesia (Second Edition), 814–835. https://doi.org/10.1016/b978-0-323-48110-6.00042-9
Da-Costa-Rocha, I., B. Bonnlaender, Sievers, H., Pischel, I., Heinrich, M. (2014). Hibiscus sabdariffa L. – A phytochemical and pharmacological review. Food Chemistry, 165, 424–443. https://doi.org/10.1016/j.foodchem.2014.05.002
Ellis, L., Sadia, Z., Holmes, M., Marshall, L., Dye, L., Boesch, C. (2022). A systematic review and meta-analysis of the effects of Hibiscus sabdariffa on blood pressure and cardiometabolic markers. Nutrition Reviews, 80(6), 1723–1737. https://doi.org/10.1093/nutrit/nuab104
Emília, A. D., Carvalho, C. S., Amadeu, M.V.M., Marques, C. R. (2023). In Vitro Antiprotozoal Activity of Hibiscus sabdariffa Extract against a Ciliate Causing High Mortalities in Turbot Aquaculture. Biology, 12(7), 912–912. https://doi.org/10.3390/biology12070912
Esterbauer, H., Cheeseman, K. H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In Methods in Enzymology (Vol. 186, pp. 07-421). Academic Press.
Farag, M. A., Rasheed, D. M., Kamal, I. M. (2015). Volatiles and primary metabolites profiling in two Hibiscus sabdariffa (roselle) cultivars via headspace SPME - GC-MS and chemometrics. Food Research International, 78, 327–335. https://doi.org/10.1016/j.foodres.2015.09.024
Fernando, N., Shalini W. Roshan N., Rodrigo, C., Lilani, K., Silva, W., Sunil P., Shiroma, H. (2016). Protein Carbonyl as a Biomarker of Oxidative Stress in Severe Leptospirosis, and Its Usefulness in Differentiating Leptospirosis from Dengue Infections. PLOS ONE, 11(6), e0156085–e0156085. https://doi.org/10.1371/journal.pone.0156085
Genchi, G. C., Lauria, G., Maria, S. S., & Catalano, A. (2020). Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health, 17(3), 679–679. https://doi.org/10.3390/ijerph17030679
Hiimann, G., Beyer, G., & Klin, Z. (1967). Laboratory procedure. Biochemistry, 5 -93.
Ilochi, O.N. and Chuemere. A.N. (2020) Non-invasive Neurologic Assessment in Recovery and Treatment Phase Acrylamide Exposure in Ageing Wistar Rats. International Neuropsychiatric Disease Journal 14(4): 96-101 doi: 10.9734/INDJ/2020/v14i430142
Janneke H., Plusquin, M., Jaco V., Nawrot, T. S., Cuypers, A., Etienne V. H., Roels, H., Carleer, R., & Staessen, J. A. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environmental Research, 103(1), 30–37. https://doi.org/10.1016/j.envres.2006.05.009
Kamel, K. S. (2017). Potassium Physiology. Fluid, Electrolyte and Acid-Base Physiology (Fifth Edition). https://doi.org/10.1016/b978-0-323-35515-5.00013-0
Koch, K., Weldle, N., Baier, S., Büchter, C., & Wim Wätjen. (2019b). Hibiscus sabdariffa L. extract prolongs lifespan and protects against amyloid-β toxicity in Caenorhabditis elegans: involvement of the FoxO and Nrf2 orthologues DAF-16 and SKN-1. European Journal of Nutrition, 59(1), 137–150. https://doi.org/10.1007/s00394-019-01894-w
Lee, J., & Harnly, J. M. (2005). Free Amino Acid and Cysteine Sulfoxide Composition of 11 Garlic (Allium sativum L.) Cultivars by Gas Chromatography with Flame Ionization and Mass Selective Detection. Journal of Agricultural and food chemistry, 53, 9100-9104.
Lucresse, H. H., Adovèlandé, J., Annick, F. A. D., Bossou, C., Koudoro, Y. A., Bogninou, G. S., Pascal, C., Félicien A.(2019). Nutritional Valorization and Chemical Composition of Seeds of Hibiscus sabdariffa sabdariffa from Benin. American Journal of Food Science and Technology, 7(5), 146–151. https://doi.org/10.12691/ajfst-7-5-2
Mahdi, B., Kobra, N., Zoya T., Mohammad R. K., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.643972
Mehrdad, R. R., Mehravar, R.R., Kazemi, S., & Ali, A.M.. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135–145. https://doi.org/10.22088/cjim.8.3.135
Méndez-Armenta, M., & Rios, R. (2007). Cadmium neurotoxicity. Environmental Toxicology and Pharmacology, 23(3), 350-358.
Moncada, S., & Higgs, A. (1993). The L-Arginine-Nitric Oxide Pathway. The New England Journal of Medicine, 329(27), 2002–2012. https://doi.org/10.1056/nejm199312303292706
Narendhirakannan, R. T., & Rajeswari, K. (2010). In Vitro Antioxidant Properties of Three Varieties of Allium Sativum L. Extracts. E-Journal of Chemistry, 7, S573-S579.
Nordberg, G. F., Bernard, A., Diamond, G. L., Duffus, J. H., Illing, P., Nordberg, M., Bergdahl, I. A., Jin, T., & Staffan Skerfving. (2018). Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure and Applied Chemistry, 90(4), 755–808. https://doi.org/10.1515/pac-2016-0910
Niu, L., Tang, Y., Zhu, B., Huang, Z.-F., Wang, D., Chen, Q., & Yu, J. (2023). Nitric oxide promotes adventitious root formation in cucumber under cadmium stress through improving antioxidant system, regulating glycolysis pathway and polyamine homeostasis. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1126606
Nunes, B., Capela, R., Tânia Sérgio, Caldeira, C., Gonçalves, F., & Alberto Teodorico Correia. (2014). Effects of chronic exposure to lead, copper, zinc, and cadmium on biomarkers of the European eel, Anguilla anguilla. Environmental Science and Pollution Research, 21(8), 5689–5700. https://doi.org/10.1007/s11356-013-2485-0
Olasehinde, T. A., Ekundayo, T. C., Kunle Okaiyeto, & Olaniran, A. O. (2022). Hibiscus sabdariffa (Roselle) calyx: a systematic and meta-analytic review of memory-enhancing, anti-neuroinflammatory and antioxidative activities. Inflammopharmacology, 31(1), 231–240. https://doi.org/10.1007/s10787-022-01101-z
Oyindamola, V.O., Seul, G.L., Nam, J.O. (2019). Beneficial Effects of Natural Bioactive Compounds from Hibiscus sabdariffa L. on Obesity. Molecules, 24(1), 210–210. https://doi.org/10.3390/molecules24010210
Pretto, A., Vania, l.l., Vera, M.M., Bibiana, S.M., Menezes, C., Clasen, B., Hoehne, L., Dressler, V. L. (2009). Acetylcholinesterase Activity, Lipid Peroxidation, and Bioaccumulation in Silver Catfish (Rhamdia quelen) Exposed to Cadmium. Archives of Environmental Contamination and Toxicology, 58(4), 1008–1014. https://doi.org/10.1007/s00244-009-9419-3
Ramesh, G., MacLean, A. G., & Philipp, M. T. (2013). Cytokines and Chemokines at the Crossroads of Neuroinflammation, Neurodegeneration, and Neuropathic Pain. Mediators Inflamm, 2013, 1–20. https://doi.org/10.1155/2013/480739
Rani, A., Kumar, A., Lal, A., & Pant, M. (2013). Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research, 24(4), 378–399. https://doi.org/10.1080/09603123.2013.835032.
Robbins, R., & Grisham, M. B. (1997). Nitric oxide. The International Journal of Biochemistry & Cell Biology, 29(6), 857–860. https://doi.org/10.1016/s1357-2725(96)00167-7
Sola, E., Moyano, P., Flores, A., Moyano, P., M.J. Anadon, María Teresa Frejo, Pelayo, A., Maria, & Javier del Pino. (2022). Cadmium-induced neurotoxic effects on rat basal forebrain cholinergic system through thyroid hormones disruption. Environmental Toxicology and Pharmacology, 90, 103791–103791. https://doi.org/10.1016/j.etap.2021.103791
Salem, M. A., Zayed, A., Beshay, M. E., Abdel, M. M., Khayal, B., George, F. A., & Ezzat, S. M. (2021). Hibiscus sabdariffa L.: phytoconstituents, nutritive, and pharmacological applications. Advances in Traditional Medicine, 22(3), 497–507. https://doi.org/10.1007/s13596-020-00542-7
Saez, G., & Nuria Están-Capell. (2014). Antioxidant Enzymes. Springer EBooks, 288–294. https://doi.org/10.1007/978-3-662-46875-3_7210
Salvatore, D., Davies, T. F., M. Schlumberger, Hay, I. D., & P. Reed Larsen. (2016). Thyroid Physiology and Diagnostic Evaluation of Patients with Thyroid Disorders. Elsevier EBooks, 333–368. https://doi.org/10.1016/b978-0-323-29738-7.00011-3
Satish , B.N., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/c4ra13315c
Shackebaei, D., Ghazvineh, S., Godini, A., Pilehvarian, A., & Reshadat, S. (2010). Cardioprotective effect of garlic juice on the isolated rat heart in ischemia reperfusion. Journal of Medicinal Plants, 35(5), 71-79.
Singh, P., Singh, I., & Shah, K. (2019). Reduced Activity of Nitrate Reductase Under Heavy Metal Cadmium Stress in Rice: An in silico Answer. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01948
Tietz, N. W. (1976). Fundermental of Clinical Chemistry. Philadelphia: W.B saunder Co.
Trang, A., & Khandhar, P. B. (2023, January 19). Physiology, Acetylcholinesterase. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK539735/
Umeoguaju, F. U., Benson C.E.E., Uba, J. O., Bekibele, G. E., Nwondah, C., & Orish, E.O. (2021). Immunomodulatory and Mechanistic Considerations of Hibiscus sabdariffa (HS) in Dysfunctional Immune Responses: A Systematic Review. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.550670
Viaene, M. (2000). Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med, 57(1), 19–27. https://doi.org/10.1136/oem.57.1.19
Wang, B., & Du, Y. (2013). Cadmium and Its Neurotoxic Effects. Oxidative Medicine and Cellular Longetivity, 2013, 1–12. https://doi.org/10.1155/2013/898034
Washington, I. M., & Gerald Van Hoosier. (2012). Clinical Biochemistry and Hematology. Elsevier EBooks, 57–116. https://doi.org/10.1016/b978-0-12-380920-9.00003-1
Wilson, G., & Garthwaite, J. (2009). Nitric Oxide. Elsevier EBooks, 1151–1156. https://doi.org/10.1016/b978-008045046-9.00684-7
Yang, X. F., Fan, G., Dy, L., Zhang Ht, Xu Zy, Ge Ym, & Wang Zl. (2015). Effect of Cadmium Exposure on the Histopathology of Cerebral Cortex in Juvenile Mice. Biological Trace Element Research, 165(2), 167–172. https://doi.org/10.1007/s12011-015-0246-2
Zheng, W., Perry, D., Nelson, D. L., & Vasken A. H. (1991). Choroid plexus protects cerebrospinal fluid against toxic metals. The FASEB Journal, 5(8), 2188–2193. https://doi.org/10.1096/fasebj.5.8.1850706
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nigerian Journal of Physiological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.