Brain antioxidant status and gene expressions of nicotinic and dopamine receptors are improved by black seed oil administration in cigarette smoke or nicotine vapour-exposed rats
Click to view file (PDF)

Keywords

antioxidant
cigarette smoke
dopamine receptor
nicotinic receptor
Nigella sativa oil

How to Cite

Adejare, A., Oloyo, A., Ishola, I., Busari, A., Ismail-Badmus, K., Abdulrazaq, M., Osifala, O., & Salami, M. (2023). Brain antioxidant status and gene expressions of nicotinic and dopamine receptors are improved by black seed oil administration in cigarette smoke or nicotine vapour-exposed rats. Nigerian Journal of Physiological Sciences, 38(2), 157–169. https://doi.org/10.54548/njps.v38i2.5

Abstract

Background: Smoking is associated with dysregulation of the antioxidant system and addiction.

Aim: This study sought to ascertain the effect of Nigella Sativa (NS) oil on the antioxidant system, nicotine/tobacco addiction as well as the expressions of α4β2 nicotinic (nAChR) and dopamine type-2 (DRD2) receptors in selected brain regions of the rat.

Methods: Thirty male Sprague-Dawley rats were divided into 6 groups comprising of vehicle-treated control, NS oil only, Smoke only, Smoke + NS oil, Nicotine only and Nicotine + NS oil. Animals were passively exposed to cigarette smoke or nicotine vapour for 12 weeks, however, NS oil treatment commenced from 9th-12th week of the experimental duration.

Results: Nicotine vapour and cigarette smoke-induced increase in cotinine level were significantly ameliorated by NS treatment. Cigarette smoke or nicotine vapour exposure significantly (p<0.05) decreased the level of antioxidant enzymes while increasing malondialdehyde level in the brain homogenates of the rats.  Administration of NS oil significantly (p<0.05) reversed the reduced antioxidant level. Cigarette-smoke also significantly increased α4-nAChR expression in the frontal cortex and olfactory bulb compared to control. Nicotine vapour significantly increased DRD2 expression only in the olfactory cortex. NS oil administration reduced both the cigarette-smoke-induced increase in α4-nAChR and nicotine vapour-induced increase in DRD2 gene expression only in the olfactory cortex.

Conclusion: Findings from this study suggest that NS oil improves brain antioxidant status while ameliorating nicotine vapour and cigarette smoke addiction through down-regulation of α4-nAChR and DRD2 gene expressions in discrete brain regions in Sprague-Dawley rats.

https://doi.org/10.54548/njps.v38i2.5
Click to view file (PDF)

References

Abdel-Zaher, A. O., Abdel-Rahman, M. S., Elwasei, F. M. (2011) Protective effect of Nigella Sativa oil against tramadol-induced tolerance and dependence in mice: role of nitric oxide and oxidative stress. Neurotoxicology 32: 725-733.

Acquas, E., Carboni, E., Leone, P., DiChiara, G. (1989). SCH23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology(Berl.); 99: 151–155.

Aebi H. (1984). Catalase in vitro. Methods in enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3.

Al-Ali, A., Alkhawajah, A. A., Randhawa, M. A., Shaikh, N. A. (2008). Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J. Ayub. Med. Coll. Abbottabad; 20: 25-27.

Ali, B. H., Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytother. Res.; 17: 299-305.

Beaulieu, J. M., Gainetdinov, R. R., Caron, M. G. (2009). Akt/GSK3 signaling in the action of psychotropic drugs. Annu. Rev. Pharmacol. Toxicol.; 49:327–347.

Beaulieu, J. M., Gainetdinov, R. R., Caron, M. G. (2009). Akt/GSK3 signaling in the action of psychotropic drugs. Annu. Rev. Pharmacol. Toxicol.; 49:327–347.

Benowitz, N. L. (2014). “Emerging nicotine delivery products: implications for public health,” Annals of the American Thoracic Society; 11(2): 231-235.

Biala, G., Budzynska, B. (2006). Reinstatement of nicotine-conditioned place preference by drug priming: effects of calcium channel antagonists. Eur. J. Pharmacol.; 537:85–93.

Biondi-Zoccai, G.; Sciarretta, S.; Bullen, C.; Nocella, C.; Violi, F.; Loffredo, L.; Pignatelli, P.; Perri, L.; Peruzzi, M.; Marullo, A.G.M.; De Falco, E.; Chimenti, I.; Cammisotto, V.; Valenti, V.; Coluzzi, F.; Cavarretta, E.; Carrizzo, A.; Prati, F.; Carnevale, R.; Frati, G., “Acute effects of heat-not-burn, electronic vaping, and traditional tobacco combustion cigarettes: the Sapienza University of Rome-Vascular Assessment of Proatherosclerotic Effects of Smoking (SUR – VAPES ) 2 Randomized Trial,” Journal of the American Heart Association 8(6): e010455, March 16, 2019.

Bold, K. W., Kong, G., Camenga, D. R. (2017). Trajectories of E-Cigarette and Conventional Cigarette Use Among Youth. Pediatrics. 141(1).

Breese, C. R., Adams, C., Logel, J., Drebing, C., Rollins, Y., Barnhart, M., Sullivan, B., Demasters, B. K., Freedman, R., Leonard, S. (1997). Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain. J. Comp. Neurol.; 387:385–398.

Brielmaier, J. M., McDonald, C. G., Smith, R. F. (2008). Nicotine place preference in a biased conditioned place preference design. Pharmacol. Biochem. Behav. 89:94–100.

Bronson, S. E., Konradi, C. (2010). Second Messenger Cascades. Handbook of basal ganglia structure and function. Vol. 20. Elsevier; Amsterdam: 447-460.

Carter, L. P., Stitzer, M. L., Henningfield, J. E., O’Connor, R. J., Cummings, K. M., Hatsukami, D. K. (2009). Abuse liability assessment of tobacco products including potential reduced exposure products. Cancer Epidemiol. Biomarkers Prev; 18:3241–3262.

Centers for Disease Control and Prevention (CDCP), Office on Smoking and Health, U.S Department of Health and Human Services (2012). Preventing Tobacco Use Among Young People: A Report of the Surgeon General. Atlanta, GA.

Chaffee, B. W., Watkins, S. L., Glantz, S. A. (2018). Electronic Cigarette Use and Progression From Experimentation to Established Smoking. Pediatrics. 141(4).

Corrigall, W. A., Coen, K. M. (1991). Opiate antagonists reduce cocaine but not nicotine self-administration. Psychopharmacology(Berl.); 104: 167–170.

Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature; 378:785–789.

DiChiara, G. (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. Eur. J. Pharmacol.; 393, 295–314.

El-Hellani, A., Al-Moussawi, S., El-Hage, R., Talih, S, Salman, R., Shihadeh, A. (2019). Carbon monoxide and small hydrocarbon emissions from sub-ohm electronic cigarettes. Chem. Res. Toxicol.; 32:312–7.

Enjalbert, A., Bockaert J. (1983). Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol. Pharmacol.; 23:576–584.

Esterlis, I., Hillmer, A. T., Bois, F., Pittman, B., McGovern, E., O’Malley, S. S. (2016). CHRNA4 and ANKK1 polymorphisms influence smoking-induced nicotinic acetylcholine receptor upregulation. Nicotine Tob. Res.; 18: 1845–1852.

Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B., Kellar, K. J. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol. Pharmacol.; 41: 31–37.

Fong, G. T., Elton-Marshall, T., Driezen, P., Kaufman, A. R., Cummings, K. M., Choi, K. (2019). U.S. adult perceptions of the harmfulness of tobacco products: descriptive findings from the 2013–14 baseline wave 1 of the path study. Addict Behav.; 91 :180–7.

Fudala, P. J., Teoh, K. W. (1985). Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacol. Biochem. Behav. 22 (2), 237–241.

Ganapathy, V.; Manyanga, J.; Brame, L.; McGuire, D.; Sadhasivam, B.; Floyd, E.; Rubenstein, D.A.; Ramachandran, I.; Wagener, T.; Queimado, L., “Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage,” PLOS One 12(5): e0177780, May 18, 2017.

Goniewicz, M. L, Kuma, T., Gawron, M., Knysak, J., Kosmider, L. (2013) Nicotine levels in electronic cigarettes. Nicotine Tob. Res.; 15: 158-66.

Gotti, C., Zoli, M., Clementi, F. (2006). Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci.; 27, 482–491.

Hoffman, A. C., Evans, S. E. (2013). Abuse potential of non-nicotine tobacco smoke components: acetaldehyde, nornicotine, cotinine, and anabasine. Nicotine Tob. Res.; 15, 622–632.

Horan, B., Smith, M. (1997). Nicotine produces conditioned place preference in Lewis, but not Fischer 344 rats. Synapse 26 (1), 93–94.

Huston-Lyons, D., Sarkar, M., Kornetsky, C. (1993). Nicotine and brain-stimulation reward: interactions with morphine. amphetamine and pimozide. Pharmacol. Biochem. Behav.; 46, 453–457.

Jensen, R. P., Luo, W., Pankow, J. F., Strongin, R. M., Peyton, D. H. (2015). Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med.; 372:392–4.

Ji EH, Sun B, Zhao T, Shu S, Chang CH, Messadi D, et al. Characterization of Electronic Cigarette. Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes. PLoS One. 2016; 11(5): e0154447. PubMed Central PMCID: PMCPMC4880184. https://doi.org/10.1371/journal.pone.0154447. PMID: 27223106.

Kanter, M., Demir, H., Karakaya, C., Ozbek, H. (2005). Gastro-protective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in rats. World J. Gastroenterol.; 11:6662–6666.

Kauer, J. A., Malenka, R. C.(2007). Synaptic plasticity and addiction. Nat. Rev. Neurosci.; 8:844–858.

Koob, G. F., LeMoal, M. (2008). Addiction and the brain anti-reward system. Annu. Rev. Psychol.; 59, 29–53.

Kota, D., Martin, B. R., Robinson, S. E. and Damaj, M. I. (2007). Nicotine dependence and reward differ between adolescent and adult male mice. J. Pharmacol. Exp. Ther.; 322, 399-407.

Kulik, M. C., Lisha, N. E., Glantz, S. A. (2018). E-cigarettes Associated with Depressed Smoking Cessation: A Cross-sectional Study of 28 European Union Countries. Am. J. Prev. Med.; 54(4): 603-609.

Le Foll, B., Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology (Berl) 178:481–492.

Le Foll, B., Goldberg, S. R. (2009). Effects of nicotine in experimental animals and humans: an update on addictive properties. Handb. Exp. Pharmacol.; 192:335–367.

Lerner, C.A.; Sundar, I.K.; Watson, R.M.; Elder, A.; Jones, R.; Done, D.; Kurtzman, R.; Ossip, D.J.; Robinson, R.; McIntosh, S.; Rahman, I., “Environmental health hazards of e-cigarettes and their components: oxidants and copper in e-cigarette aerosols,” 198: 100-107, March 2015.

Leventhal, A. M., Strong, D. R., Kirkpatrick, M. G. (2015). Association of Electronic Cigarette Use With Initiation of Combustible Tobacco Product Smoking in Early Adolescence. JAMA 314(7): 700-707.

Liu, Y., Le Foll, B. (2008). Conditioned place preference induced by licit drugs: establishment, extinction, and reinstatement. Scientific World Journal 8, 1228–1245.

Lomazzo, E., Hussmann, G. P., Wolfe, B. B., Yasuda, R. P., Perry, D. C., Kellar, K. J. (2011). Effects of chronic nicotine on heteromeric neuronal nicotinic receptors in rat primary cultured neurons. J. Neurochem.; 119: 153–164.

Mansour, M. A., Ginwai, O. T., El-Hadiya, T., ElKhatib, A. S., Al-Shabanah, O. A. (2001). Effects of volatile oil constituents of Nigella Sativa on carbon tetrachloride-hepatotoxicity in mice: evidence for antioxidant effects of thymoquinone. Res. Commun. Mol. Pathol. Pharmacol.; 110: 239-251.

Maritz, G. S. (2009). Are nicotine replacement therapy, varenicline or bupropion options for pregnant mothers to quit smoking? Effects on the respiratory system of the offspring. Ther. Adv. Respir. Dis.; 3(4):193-210. https://doi.org/10.1177/1753465809343712 PMID: 19706643.

Marks, M. J., Burch, J. B., Collins, A. C. (1983). Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J. Pharmacol. Exp. Ther. 226:817–825.

Marks, M. J., McClure-Begley, T. D., Whiteaker, P., Salminen, O., Brown, R. W., Cooper, J. (2011). Increased nicotinic acetylcholine receptor protein underlies chronic nicotine-induced up-regulation of nicotinic agonist binding sites in mouse brain. J. Pharmacol. Exp. Ther.; 337: 187–200.

Mathur, A., Dempsey, O. J. (2018). Electronic cigarettes: a brief update. J R Coll. Physicians. Edinb.; 48:346–51.

Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R.(2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology(Berl.) 190, 269–319.

Melroy-Greif, W. E., Stitzel, J. A., Ehringer, M. A. (2016). Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use. Genes Brain Behav.; 15: 89–107.

Mihara, M., & Uchiyama, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical biochemistry, 86(1), 271–278. https://doi.org/10.1016/0003-2697(78)90342-1

Morakinyo, A. O., Iranloye, B. O., Daramola, A. O., Adegoke, O. A. (2011). Antifertility effect of calcium channel blockers on male rats: association with oxidative stress. Advances in Medical Sciences; 56: 1-8.

Nielsen, F., Mikkelsen, B. B., Nielsen, J. B., Andersen, H. R., Grandjean, P. (2000) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical Chemistry;43(7):1209–1214.

NIH Publications No. 8023, revised 1996.

O’Dell, L.E., Khroyan, T.V. (2009). Rodent models of nicotine reward: what do they tell us about tobacco abuse in humans? Pharmacol. Biochem. Behav. 91 (4), 481–488.

Okhuarobo, A., Igbe, I., Yahaya, A. and Sule, Z. (2019). Effect of caffeine on alcohol consumption and alcohol-induced conditioned place preference in rodents. J. Basic Clin. Physiol. Pharmacol.; 30(1): 19–28.

Omotoso, G.O., Olagunju, A.A., Enaibe, B. U., Oyabambi, A. O., Balogun, O. R., Olawuyi, S. (2012). Alteration in Semen Characteristics and Testicular Histology of male Wistar Rats following exposure to Cigarette Smoke. West African Journal of Assisted Reproduction. https://www.researchgate.net/publication/256437770.

Perry, D. C., Davila-Garcia, M. I., Stockmeier, C. A., Kellar, K. J. (1999). Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J. Pharmacol. Exp. Ther.; 289:1545–1552

Picciotto, M. R. (2003). Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol. Sci. 24 (9), 493–499.

Picciotto, M. R., Addy, N. A., Mineur, Y.S., Brunzell, D. H. (2008). It is not “either / or”: activation and desensitization of nicotinic acetylcholinereceptors both contribute to behaviors related to nicotine addiction and mood. Prog. Neurobiol.; 84, 329–342.

Pons, S., Fattore, L., Cossu, G., Tolu, S., Porcu, E., Mcintosh, J. M. (2008). Crucial role of a4 and a6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J. Neurosci. 28, 12318–12327.

Prokhorov, A. V., Pallonen, U. E., Fava, J. L., Ding, L. and Niaura, R. (1996). Measuring nicotine dependence among high-risk adolescent smokers. Addict. Behav.; 21, 117-127.

Randhawa, M. A. Alghamdi, M. S. (2002). A review of the pharmaco-therapeutic effects of Nigella Sativa. Pak. J. Med. Res.; 41: 77-83.

Rubenstein, D.A.; Hom, S.; Ghebrehiwet, B.; Yin, W., “Tobacco and e-cigarette products initiate Kupffer Cell inflammatory responses,”Molecular Immunology [Epub ahead of print], June 11, 2015.

Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharmacol.; 5: 1749-1770.

Sangi, S., Ahmed, S. P., Channa, M. A., Ashfaq, M., Mastoi, S. M. (2008). A new and novel treatment of opioid dependence: Nigella sativa 500 mg. J. Ayub Med. Coll. Abbottabad; 20: 118-124.

Schwartz, R. D., Kellar, K. J. (1983). Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science; 220: 214–216.

Seamans, J. K. Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex, Prog. Neurobiol.; 74: 1–58.

Shram, M. J. and Le, A. D. (2010). Adolescent male Wistar rats are more responsive than adult rats to the conditioned rewarding effects of intravenously administered nicotine in the place conditioning procedure. Behav. Brain Res.; 206, 240-244.

Sifat, A. E., Vaidya, B., Kaisar, M. A., Cucullo, L., Abbruscato, T. J. (2018). Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J. Neurochem.; 147:204–21.

Singh, T., Arrazola, R. A., Corey, C. G. (2016). Tobacco use among middle and high school students–United States, 2011– 2015. MMWR Morb. Mortal Wkly Rep. 65(14): 361–367.

Sun, M., & Zigman, S. (1978). An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Analytical biochemistry, 90(1), 81–89. https://doi.org/10.1016/0003-2697(78)90010-6

Sussan, T.E.; Gajghate, S.; Thimmulappa, R.K.; Ma, J.; Kim, J.H.; Sudini, K.; Consolini, N.; Cormier, S.A.; Lomnicki, S.; Hasan, F.; Pekosz, A.; Biswal, S., “Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model,” PLOS ONE, February 4, 2015.

Tapper, A. R., McKinney, S. L., Marks, M. J., Lester, H. A. (2007). Nicotine responses in hypersensitive and knockout alpha 4 mice account for tolerance to both hypothermia and locomotor suppression in wildtype mice. Physiol. Genomics; 31: 422–428.

Torres, O. V., Tejeda, H. A., Natividad, L. A. and O'Dell, L. E. (2008). Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacol. Biochem. Behav.90, 658-663.

Tzschentke, T. M. (1998). Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol.; 56, 613-672.

Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other repairable particles. Int J Environ Res Public Health. 2009; 6 (2):445-462.doi:10.3390/ijerph6020445.

van Dooran, R., Leijdekkers, C. M., & Henderson, P. T. (1978). Synergistic effects of phorone on the hepatotoxicity of bromobenzene and paracetamol in mice. Toxicology, 11(3), 225–233. https://doi.org/10.1016/s0300-483x(78)91389-6.

Vizi, E.S., Palkovits, M., Lendvai, B., Baranyi, M., Kovacs, K.J. Zelles, T. (2004). DistiNCV temperature-dependent dopamine-releasing effect of drugs of abuse in the olfactory bulb, Neurochem. Int.; 45: 63–71.

Weaver, S. R., Huang, J., Pechacek, T. F., Heath, J. W., Ashley, D. L., Eriksen, M. P. (2015). Are electronic nicotine delivery systems helping cigarette smokers quit? Evidence from a prospective cohort study of U.S. adult smokers, 2015–2016. PLOS ONE 13(7):e0198047.

World Health Organization (2013). Report on the global tobacco epidemic. WHO Press, World Health Organization, Geneva, Switzerland.

Zambrano, C. A., Salamander, R.M., Collins, A. C., Grady, S. R., Marks, M. J. (2012). Regulation of the distribution and fuNCVion of [(125)I] epibatidine binding sites by chronic nicotine in mouse embryonic neuronal cultures. J. Pharmacol. Exp. Ther.; 342: 245–254.

Zoli, M., Lena, C., Picciotto, M. R., Changeux, J. P. (1998). Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J. Neurosci. 18:4461–4472.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Nigerian Journal of Physiological Sciences