Protocatechuic acid modulates hepatic oxidative stress and inflammation linked to DMN exposure in rat

Authors

  • Folake Asejeje
  • Sylvia Etim
  • Gbolahan Asejeje
  • Benneth Chukwudi Iwuoh
  • Sanmi Ibukunoluwa Akintade
  • Isaac Adedara
  • Ebenezer Olatunde Farombi

DOI:

https://doi.org/10.54548/njps.v38i2.4

Keywords:

Protocatechuic Acid,, Hepatotoxicity, Antioxidant, Oxidative Stress, Dimethyl nitrosamine

Abstract

Dimethyl nitrosamine (DMN), a potent hepatotoxin, exerts carcinogenic effects and induces hepatic necrosis in experimental animals via CYP2E1 metabolic activation, and generation of reactive oxygen species (ROS). Protocatechuic acid (PCA), a plant-based simple phenolic compound and potent antioxidant, has been shown to affect the development of neoplasia in the rat liver and inhibit the initiation or progression phases of most cancers. In this study, the modulatory effects of PCA on DMN-induced hepatotoxicity, oxidative stress, inflammation, and selected phase I xenobiotic metabolizing enzymes were investigated in male Wistar rats. This study assessed biomarkers of hepatic injury (alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and gamma- glutamyl transferase); oxidative stress (hydrogen peroxide concentration, lipid peroxidation, and reduced glutathione levels); measured activities of antioxidant enzymes (catalase, sodium dismutase, glutathione peroxidase, glutathione S-transferase); and inflammation (Tumor necrosis factor (TNF)-α, interleukin-1-Beta (IL-1β) and iNOS). The results of our investigation demonstrated that pretreatment with PCA at 50 and 100 mg/kg body weight p.o. reduced DMN (20 mg/kg bw) i.p. mediated hepatic injury, oxidative stress, and inflammation in a dose-dependent manner. In addition, the activities of phase I metabolizing enzymes were significantly induced except for aminopyrine-N-demethylase in the DMN-treated rats when compared with the DMN alone control group. This induction was also reversed by pre-treatment with PCA. The result of this study suggests that PCA is hepatoprotective against DMN-induced hepatic damage by its ability to suppress oxidative stress, inflammation, and modulate the activities of the selected phase I drug metabolizing enzymes. Thus, PCA may prove useful in combating DMN-induced hepatic damage

References

Ali, B. H., Wabel, N. A., and Blunden, G. (2005). Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19, 369-375.

Allavena, P., Garlanda, C., Borrello, M. G., Sica, A. and Mantovani, A. (2008). Pathways connecting inflammation and cancer. Current opinion in genetics & development, 18, 3-10.

Anand, A. K. and Mallick, A. K. (2019). A comparative study of serum gamma-glutamyltranspeptidase, serum alkaline phosphatase and GGT/ALP ratio in different liver disorders. Int. J. Contemp. Med. Res, 6, 11-14.

Andrzejewski, P., Kasprzyk-Hordern, B. and Nawrocki, J. (2005). The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants. Desalination, 176, 37-45.

Babich, H., Sedletcaia, A. and Kenigsberg, B. (2002). In Vitro Cytotoxicity of Protocatechuic Acid to Cultured Human Cells from Oral Tissue: Involvement in Oxidative Stress. Pharmacology & Toxicology, 91, 245-253.

Baer-Dubowska, W., Szaefer, H. and Krajka-Kuzniak, V. (1998). Inhibition of murine hepatic cytochrome P450 activities by natural and synthetic phenolic compounds. Xenobiotica, 28, 735-743.

Barclay, L. R. C., Baskin, K. A., Dakin, K. A., Locke, S. J. and Vinqvist, M. R. (1990). The antioxidant activities of phenolic antioxidants in free radical peroxidation of phospholipid membranes. Canadian journal of chemistry, 68, 2258-2269.

Barnes, J. M. and Magee, P. (1954). Some toxic properties of dimethylnitrosamine. British Journal of Industrial Medicine, 11, 167.

Bartsch, H., Nair, U., Risch, A., Rojas, M., Wikman, H. and Alexandrov, K. (2000). Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiology and Prevention Biomarkers, 9, 3-28.

Beutler, E. (1963). Improved method for the determination of blood glutathione. J. lab. clin. Med., 61, 882-888.

Chapman, S. E. and Hostutler, R. A. (2013). A laboratory diagnostic approach to hepatobiliary disease in small animals. Veterinary Clinics: Small Animal Practice, 43, 1209-1225.

Chen, X., Huang, G., An, C., Yao, Y. and Zhao, S. (2018). Emerging N-nitrosamines and N-nitramines from amine-based post-combustion CO2 capture–a review. Chemical Engineering Journal, 335, 921-935.

Choi, M. J., Zheng, H. M., Kim, J. M., Lee, K. W., Park, Y. H. and Lee, D. H. (2016). Protective effects of Centella asiatica leaf extract on dimethylnitrosamine‑induced liver injury in rats. Molecular medicine reports, 14, 4521-4528.

Costa, C., Tsatsakis, A., Mamoulakis, C., Teodoro, M., Briguglio, G., Caruso, E., Tsoukalas, D., Margina, D., Dardiotis, E. and Kouretas, D. (2017). Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food and Chemical Toxicology, 110, 286-299.

Crespo, I., San-Miguel, B., Mauriz, J. L., Ortiz De Urbina, J. J., Almar, M., Tuñón, M. J. and González-Gallego, J. (2017). Protective effect of protocatechuic acid on TNBS-induced colitis in mice is associated with modulation of the SphK/S1P signaling pathway. Nutrients, 9, 288.

Danko, I. and Chaschin, N. (2005). Association of CYP2E1 gene polymorphism with predisposition to cancer development. Exp Oncol, 27, 248-256.

Englehardt, A. (1970). Measurement of alkaline phosphatase. Aerztl Labor, 16, 1.

Falcone Ferreyra, M. L., Rius, S. and Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in plant science, 3, 222.

Farombi, E. O., Adedara, I. A., Awoyemi, O. V., Njoku, C. R., Micah, G. O., Esogwa, C. U., Owumi, S. E. and Olopade, J. O. (2016). Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct, 7, 913-21.

Farombi, E. O., Shrotriya, S., Na, H.-K., Kim, S.-H. and Surh, Y.-J. (2008). Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology, 46, 1279-1287.

Farombi, E. O., Shrotriya, S. and Surh, Y.-J. (2009). Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life sciences, 84, 149-155.

Fernandes, J. V., Cobucci, R. N. O., Jatobá, C. A. N., De Medeiros Fernandes, T. A. A., De Azevedo, J. W. V. & De Araújo, J. M. G. (2015). The role of the mediators of inflammation in cancer development. Pathology & Oncology Research, 21, 527-534.

Gani, S. A., Muhammad, S. A., Kura, A. U., Barahuie, F., Hussein, M. Z. and Fakurazi, S. (2019). Effect of protocatechuic acid-layered double hydroxide nanoparticles on diethylnitrosamine/phenobarbital-induced hepatocellular carcinoma in mice. PloS one, 14, e0217009.

George, J., Rao, K. R., Stern, R. and Chandrakasan, G. (2001). Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen. Toxicology, 156, 129-138.

Giboney, P. T. (2005). Mildly elevated liver transaminase levels in the asymptomatic patient. American family physician, 71, 1105-1110.

Gowda, S., Desai, P. B., Hull, V. V., Math, A. A. K., Vernekar, S. N. and Kulkarni, S. S. (2009). A review on laboratory liver function tests. The Pan african medical journal, 3.

Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological chemistry, 249, 7130-7139.

Halliwell, B. and Gutteridge, J. M. (2015). Free radicals in biology and medicine, Oxford University Press, USA.

Hertog, M. G., Hollman, P. C. and Katan, M. B. (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of agricultural and food chemistry, 40, 2379-2383.

Hirose, Y., Tanaka, T., Kawamori, T., Olnishi, M., Makita, H., Mori, H., Satoh, K. and Hara, A. (1995). Chemoprevention of urinary bladder carcinogenesis by the natural phenolic compound protocatechuic acid in rats. Carcinogenesis, 16, 2337-2342.

Holzmann, H., Morsches, B. and Kabel, E. (1968). Enzymaktivitätsmuster im Serum von Kranken mit Psoriasis vulgaris. Archiv für klinische und experimentelle Dermatologie, 231, 335-343.

Hsu, C.-C., Lin, K.-Y., Wang, Z.-H., Lin, W.-L. and Yin, M.-C. (2008). Preventive effect of Ganoderma amboinense on acetaminophen-induced acute liver injury. Phytomedicine, 15, 946-950.

Hu, R., He, Z., Liu, M., Tan, J., Zhang, H., Hou, D.-X., He, J. and Wu, S. (2020). Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. Journal of Animal Science and Biotechnology, 11, 92.

Kakkar, S. and Bais, S. (2014). A review on protocatechuic acid and its pharmacological potential. International Scholarly Research Notices, 2014.

Kaplan, M. M. (2002). Alanine aminotransferase levels: what's normal? Annals of internal medicine, 137, 49-51.

Khan, A., Rashid, R., Fatima, N., Mahmood, S., Mir, S., Khan, S., Jabeen, N. and Murtaza, G. (2015). Pharmacological activities of protocatechuic acid. Acta poloniae pharmaceutica, 72 4, 643-50.

Kim, S. K., Seo, J. M., Chae, Y. R., Jung, Y. S., Park, J. H. and Kim, Y. C. (2009). Alleviation of dimethylnitrosamine-induced liver injury and fibrosis by betaine supplementation in rats. Chemico-biological interactions, 177, 204-211.

Krajka-Kuźniak, V., Szaefer, H. and Baer-Dubowska, W. (2004). Modulation of 3-methylcholanthrene-induced rat hepatic and renal cytochrome P450 and phase II enzymes by plant phenols: protocatechuic and tannic acids. Toxicology letters, 152, 117-126.

Lee, D.-H., Blomhoff, R. and Jacobs, D. R. (2004). Is Serum Gamma Glutamyltransferase a Marker of Oxidative Stress? Free Radical Research, 38, 535-539.

Lijinsky, W. (1970). N-nitrosamines as environmental carcinogens. ACS Publications.

Lin, H.-H., Chen, J.-H., Huang, C.-C. and Wang, C.-J. (2007). Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. International Journal of Cancer, 120, 2306-2316.

Liu, C.-L., Wang, J.-M., Chu, C.-Y., Cheng, M.-T. and Tseng, T.-H. (2002). In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity. Food and Chemical Toxicology, 40, 635-641.

Liu, M., Zhu, K., Yao, Y., Chen, Y., Guo, H., Ren, G., Yang, X. and Li, J. (2020). Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry, 97, 703-713.

Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: mechanism of action. The Journal of nutrition, 134, 3479S-3485S.

Magee, P. (1971). Toxicity of nitrosamines: Their possible human health hazards. Food and cosmetics toxicology, 9, 207-218.

Mantovani, A., Garlanda, C. and Allavena, P. (2010). Molecular pathways and targets in cancer-related inflammation. Annals of medicine, 42, 161-170.

Masella, R., Varì, R., D'archivio, M., Di Benedetto, R., Matarrese, P., Malorni, W., Scazzocchio, B. and Giovannini, C. (2004). Extra Virgin Olive Oil Biophenols Inhibit Cell-Mediated Oxidation of LDL by Increasing the mRNA Transcription of Glutathione-Related Enzymes. The Journal of nutrition, 134, 785-791.

Mazari, S. A., Alaba, P. and Saeed, I. M. (2019). Formation and elimination of nitrosamines and nitramines in freshwaters involved in post-combustion carbon capture process. Journal of Environmental Chemical Engineering, 7, 103111.

Mccomb, R. B., Bowers Jr, G. N. and Posen, S. (2013). Alkaline phosphatase, Springer Science & Business Media.

Misra, H. P. and Fridovich, I. (1972). The univalent reduction of oxygen by reduced flavins and quinones. Journal of Biological chemistry, 247, 188-192.

Moldogazieva, N. T., Mokhosoev, I. M., Feldman, N. B. and Lutsenko, S. V. (2018). ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research, 52, 507-543.

Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B. and Pasparakis, M. (1999). Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature medicine, 5, 828-831.

Morrissey, J. P. and Osbourn, A. E. (1999). Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiology and Molecular Biology Reviews, 63, 708-724.

Moss, D., Henderson, A. and Tietz, T. (1999). Textbook of Clinical Enzymology, Clinical Enzymology. WB Saunders Co, Philadelphia, PA, USA. p617-721.

Nakajima, T. and Aoyama, T. (2000). Polymorphism of drug-metabolizing enzymes in relation to individual susceptibility to industrial chemicals. Industrial health, 38, 143-152.

Netter, K. and Seidel, G. (1964). An adaptively stimulated O-demethylating system in rat liver microsomes and its kinetic properties. Journal of pharmacology and experimental therapeutics, 146, 61-65.

Ojiako, O. and Nwanjo, H. (2006). Is Vernonia amygdalina hepatotoxic or hepatoprotective? Response from biochemical and toxicity studies in rats. African Journal of Biotechnology, 5.

Ortega, A. M. M. and Campos, M. R. S. (2019). Bioactive Compounds as Therapeutic Alternatives. Bioactive compounds. Elsevier.

Ozsoy, N., Can, A., Yanardag, R. and Akev, N. (2008). Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry, 110, 571-583.

Park, J.-E., Seo, J.-E., Lee, J.-Y. and Kwon, H. (2015). Distribution of seven N-nitrosamines in food. Toxicological research, 31, 279-288.

Poste, A. E., Grung, M. and Wright, R. F. (2014). Amines and amine-related compounds in surface waters: a review of sources, concentrations and aquatic toxicity. Science of the total environment, 481, 274-279.

Poupon, R. (2015). Liver alkaline phosphatase: A missing link between choleresis and biliary inflammation. Hepatology, 61, 2080-2090.

Rani, V., Verma, Y., Rana, K. and Rana, S. V. S. (2018). Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chemico-biological interactions, 295, 84-92.

Ray, S., Brown, D. and Yang, N. (2014). Dimethylnitrosamine.

Reitman, S. and Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology, 28, 56-63.

Rojas, J. and Buitrago, A. (2019). Antioxidant Activity of Phenolic Compounds Biosynthesized by Plants and Its Relationship With Prevention of Neurodegenerative Diseases. Bioactive Compounds. Elsevier.

Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A., Hafeman, D. G. and Hoekstra, W. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science, 179, 588-590.

Sandoval-Yañez, C., Mascayano, C. and Martínez-Araya, J. I. (2018). A theoretical assessment of antioxidant capacity of flavonoids by means of local hyper–softness. Arabian journal of chemistry, 11, 554-563.

Saricicek, E., Celik, A., Uremis, N. and Kilinc, M. (2016). Protective effects of simvastatin, Nigella sativa oil and thmoquinone against dimethylnitrosamine-induced oxidative stress in rat kidney.

Scanlan, R. A. and Issenberg, P. (1975). N‐nitrosamines in foods. Critical Reviews in Food Science & Nutrition, 5, 357-402.

Schenkman, J. B., Frey, I., Remmer, H. and Estabrook, R. W. (1967). Sex differences in drug metabolism by rat liver microsomes. Molecular pharmacology, 3, 516-525.

Sebranek, J. and Cassens, R. (1973). Nitrosamines: A review. Journal of Milk and Food Technology, 36, 76-91.

Shamsi, A., Ahmed, A. and Bano, B. (2017). Structural transition of kidney cystatin in dimethylnitrosamine-induced renal cancer in rats: identification as a novel biomarker for kidney cancer and prognosis. Journal of Biomolecular Structure and Dynamics, 35, 1020-1029.

Sharma, U., Pal, D. and Prasad, R. (2014). Alkaline Phosphatase: An Overview. Indian Journal of Clinical Biochemistry, 29, 269-278.

Siaga, T., Lichti, U., Hennings, H., Elgjo, K. and Yuspa, S. (1978). Effects of tumor promoters and steroidal anti-inflammatory agents on skin of newborn mice in vivo and in vitro. Journal of the National Cancer Institute, 60, 425-431.

Singh, B., Parsaik, A. K., Mielke, M. M., Erwin, P. J., Knopman, D. S., Petersen, R. C. and Roberts, R. O. (2014). Association of mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Journal of Alzheimer's disease, 39, 271-282.

Singh, B., Singh, J. P., Kaur, A. and Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food research international, 101, 1-16.

Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical biochemistry, 47, 389-394.

Szasz, G. (1969). A kinetic photometric method for serum γ-glutamyl transpeptidase. Clinical chemistry, 15, 124-136.

Tanaka, T., Kojima, T., Kawamori, T. and Mori, H. (1995). Chemoprevention of digestive organs carcinogenesis by natural product protocatechuic acid. Cancer, 75, 1433-1439.

Tanaka, T., Kojima, T., Kawamori, T., Yoshimi, N. and Mori, H. (1993a). Chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis by a simple phenolic acid protocatechuic acid in rats. Cancer research, 53, 2775-2779.

Tanaka, T., Kojima, T., Suzui, M. and Mori, H. (1993b). Chemoprevention of colon carcinogenesis by the natural product of a simple phenolic compound protocatechuic acid: suppressing effects on tumor development and biomarkers expression of colon tumorigenesis. Cancer Res, 53, 3908-13.

Tanaka, T., Tanaka, T. and Tanaka, M. (2011) Potential Cancer Chemopreventive Activity of Protocatechuic Acid. Journal of Experimental & Clinical Medicine, 3, 27-33.

Tricker, A. & Preussmann, R. (1991). Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutation Research/Genetic Toxicology, 259, 277-289.

Tripathi, P. & Aggarwal, A. (2006). NF-kB transcription factor: a key player in the generation of immune response. Current science, 519-531.

Tseng, T. H., Kao, T. W., Chu, C. Y., Chou, F. P., Lin, W. L. and Wang, C. J. (2000). Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem Pharmacol, 60, 307-15.

Tsuda, T., Horio, F. and Osawa, T. (1999). Absorption and metabolism of cyanidin 3-O-β-D-glucoside in rats. FEBS Letters, 449, 179-182.

Usunobun, U. and Okolie, N. (2016). Effect of Annona muricata pre-treatment on liver synthetic ability, kidney function and hematological parameters in dimethylnitrosamine (DMN)-administered rats. Int. J. Med, 4, 1-5.

Usunomena, U., Ademuyiwa, A. J., Tinuade, O. O., Uduenevwo, F. E., Martin, O. and Okolie, N. (2012). N-nitrosodimethylamine (NDMA), Liver function enzymes, renal function parameters and oxidative stress parameters: A Review. British Journal of Pharmacology and Toxicology, 3, 165-176.

Vanisree, A. and Shyamala, D. C. (1999). Effect of therapeutics strategy established by N-acetyl cysteine and vitamin C on the activities of tumour marker enzymes in vitro. Indian Journal of Pharmacology, 31, 275.

Varshney, R. and Kale, R. (1990). Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. International journal of radiation biology, 58, 733-743.

Vozarova, B., Stefan, N., Lindsay, R. S., Saremi, A., Pratley, R. E., Bogardus, C. and Tataranni, P. A. 2002. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. diabetes, 51, 1889-1895.

Wang, A.-H., Sun, C.-S., Li, L.-S., Huang, J.-Y. and Chen, Q.-S. (2002). Relationship of tobacco smoking, CYP1A1, GSTM1 gene polymorphism and esophageal cancer in Xi’an. World journal of gastroenterology, 8, 49.

Wolff, I. and Wasserman, A. (1972). Nitrates, nitrites, and nitrosamines. Science, 177, 15-19.

Wolff, S. P. (1994). Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods in enzymology, 233, 182-189.

Xi, X., Hu, S., Zhou, Z., Liu, X., Tang, J. and Shen, Y. (2016). Dendrimers with the protocatechuic acid building block for anticancer drug delivery. Journal of Materials Chemistry B, 4, 5236-5245.

Zhang, W., Yin, L., Tao, X., Xu, L., Zheng, L., Han, X., Xu, Y., Wang, C. and Peng, J. (2016). Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environmental toxicology and pharmacology, 45, 193-201.

Published

2023-12-31

Issue

Section

Full Length Research Articles

How to Cite

Protocatechuic acid modulates hepatic oxidative stress and inflammation linked to DMN exposure in rat. (2023). Nigerian Journal of Physiological Sciences, 38(2), 145-155. https://doi.org/10.54548/njps.v38i2.4

Similar Articles

1-10 of 81

You may also start an advanced similarity search for this article.