Comparative influence of kolaviron and coenzyme Q10 on complex I activity, glutamate clearance, 3,4-dihydroxyphenethylamine metabolism, and redox stress in rotenone-induced neurotoxicity

Authors

  • A. C. Akinmoladun
  • Ibrahim Saliu Federal University of Technology Akure
  • Olaoluwa Abilogun Federal University of Technology Akure
  • Omotola Helen Ajibola Federal University of Technology Akure
  • Zainab Abiola Amoo Federal University of Technology Akure
  • Olubukola Benedicta Ojo Federal University of Technology Akure
  • Ebenezer O. Farombi University of Ibadan
  • Mary Tolulope Olaleye Federal University of Technology Akure

DOI:

https://doi.org/10.54548/njps.v37i2.2

Abstract

3,4-dihydroxyphenethylamine (dopamine) depletion, inhibition of complex I activity, oxidative stress, and glutamate excitotoxicity are cardinal biochemical features of neurotoxicity induced by systemic unilateral infusion of rotenone. Kolaviron (KV), a biflavonoid from Garcinia kola seeds, has been proven to have pharmacological effects against neurotoxicity. Coenzyme Q10 plays an essential role in mitochondrial oxidative phosphorylation and as an antioxidant. This study examined the comparative influence of kolaviron and coenzyme Q10 on complex I activity, dopamine metabolism, glutamate clearance, and redox stress in rotenone-induced neurotoxicity in the cortex, hippocampus, and striatum of the brain of rats. Adult Male Wistar rats were pretreated with 200 mg/kg KV or 100 mg/kg coenzyme Q10 for 7 days followed by administration of a progressive six doses of 1.5 mg/kg rotenone within the next 48 h after which the animals were euthanized and the brain excised. On the cortical, hippocampal, and striatal regions of the brain, complex I activity, dopamine metabolism, oxidative stress markers, as well as glutamate metabolism were carried out and analyzed. In all brain regions examined, KV and coenzyme Q10 pretreatment modulated complex I activity, ameliorated redox imbalance, and enhanced dopamine metabolism via increasing the activity of tyrosine hydroxylase and decreasing monoamine oxidase activity. KV facilitated glutamate clearance through augmentation of glutamate dehydrogenase and glutamine synthetase activities.  The activity of KV was comparable to that of the mitochondrial membrane antioxidant compound, coenzyme Q10, this indicates that KV is a promising therapeutic agent in the treatment of Parkinson’s disease and its activity compares well with coenzyme Q10

Author Biographies

  • Ibrahim Saliu, Federal University of Technology Akure

    Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry

  • Olaoluwa Abilogun, Federal University of Technology Akure

    Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry

  • Omotola Helen Ajibola, Federal University of Technology Akure

    Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry

  • Zainab Abiola Amoo, Federal University of Technology Akure

    Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry

  • Olubukola Benedicta Ojo, Federal University of Technology Akure

    Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry

  • Ebenezer O. Farombi, University of Ibadan

    Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry,

  • Mary Tolulope Olaleye, Federal University of Technology Akure

    Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry

References

Paul, M. L., Graybiel, A. M., David, J. C. and Robert, H. A. (1992). D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J. Neurosci. 12: 3729-3742.

Ira, E., Jiang, C., Mark, W., Dodson, J., Hog, S., Bruce, A. and Ming, G. (2006). Drosphila pink 1 is required for mitochondrial function and interacts genetically with Parkin. Int. J. Neurosci. 441: 1162-1166

Suri, R. E. and Schultz, W. (1999). A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neurosci. 91: 871-890.

Suri, R. E, Bargas, J. and Arbib, M. A. (2001). Modeling functions of striatal dopamine modulation in learning and planning. Neurosci. 103: 65-85.

Hyman, S. E., Malenka, R. C. and Nestler, E. J. (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Ann. Rev. Neurosci 29: 565-598.

Bladini, F., Porter, R. H. and Greenamyre, T. (1996). Glutamate and Parkinson’s disease. Mol. Neurobiol. 12(1): 73-93.

Chassain, C., Bielicki, G., Donnat, J-P., Renou, J-P., Eschalier, A. and Durif, F. (2005). Cerebral glutamate metabolism in Parkinson’s disease: an in vivo dynamic 13C NMS study in the rat. Exp. Neurol. 191(2): 276-284.

Jenner, P. (1998). Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol. Scand. 87: 6-13.

Onyema, K. I., Loikkanen, J., Eerikäinen, S. and Naarala, J. (1998). Glutamate-stimulated ROS production in neuronal cultures: interactions with lead and the cholinergic system. Neurotoxicol. 19(4-5): 669-74.

Sherer, T. B., Betarbet, R., Stout, A. K, Lund, S., Baptista, M., Panov, A. V., Cookson, M. R. and Greenamyre, J. T. (2001). An in vitro model of Parkinson’s disease: linking mitochondrial impairement to altered α-synuclein metabolism and oxidative damage. J. Neurosci. 22: 7006-7015

Gorell, J. M, Johnson, C. C., Rybicki, B. A., Peterson, E. L. and Richardson, R. J. (1998). The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50(5): 1346-50.

Greenamyre, J. T. and Hastings, T. G. (2004). Biomedicine. Parkinson’s- divergent causes, convergent mechanisms. Science 104:1120-1122.

Chou K. L., Taylor, J. L. and Patil, P. G. (2013). The MDS-UPDRS tracks motor and non-motor improvement due to subthalamic nucleus deep brain stimulation in Parkinson disease, Parkinsonism. Relat. Disorder 60(1): 46-78.

David, H., Howard, H., Sharon, M. and Melanle, B. (2012). Ochsner Health System in New Orleans, of the Division of Movement and Memory Disorder. Louisiana. pp 6-7.

Betarbet, R., Sherer, T. B., Mackenzie, G., Garcia-Osuna, M., Panov, A. V., Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3: 1301-1306.

Thiffault, C., Langsron, J. W. and Di Monte, D. A. (2000). Increased striatal dopamine turnover following acute administration of rotenone to mice. Brain Res. 885: 283-288.

Adegboye, M. F., Akinpelu, D. A. and Okoh, A. I. (2008). The bioactive and phytochemical properties of Garcinia kola (Heckel) seed extract on some pathogens. Afr. J. Biotech. 7(21): 3934-3938.

Farombi, E. O. and Owoeye, O. (2011). Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. Int. J. Env. Res. Public Health 8: 2533-55.

Farombi, E. O., Adedara, I. A., Ajayi, B. O., Ayepola, O. R., Egbeme, E. E. (2013). Kolaviron, a natural antioxidant and anti-inflammatory phytochemical prevent dextran sulphate sodium-induced colitis in rats. Basic. Clin. Pharmacol. Toxicol. 113: 49-55.

Akinmoladun, A. C., Akinrinola, B. L., Olaleye, M. T. and Farombi, E. O. (2015). Kolaviron, a Garcinia kola biflavonoid complex, protects against ischemia/reperfusion injury: pertinent mechanistic insights from biochemical and physical evaluations in rat brain. Neurochem. Res. 11064: 1015-1527.

Jie, Z. (2014). Clinical effects and safety of coenzyme Q10 in Parkinson’s disease. China Foreign Med. Treat. 23: 79-80.

Farombi, E. O., Awogbindin, I. O., Farombi, T. H., Oladele, J. O., Izomoh, E. R., Aladelokun, O. B., Ezekiel, I. O., Adebambo, O. I., Abah, V. O. (2019). Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson’s disease. Neurotoxicology 73:132-141.

Farombi, E. O., Awogbindin, I. O., Owoeye, O., Abah, V. O., Izomoh, E. R. and Ezekiel, I. O. (2020) Kolaviron ameliorates behavioural deficit and injury to striatal dopaminergic terminals via modulation of oxidative burden, DJ-1 depletion and CD45R cells infiltration in MPTP-model of Parkinson’s disease. Metab. Brain Dis. 35: 933-946.

Iwu, M. M. (1985). Antihepatotoxic constituents of Garcinia kola seeds. Experimental 41: 699-700

Farombi, E. O. (2000). Mechanisms for the hepatoprotective action of kolaviron: studies on hepatic enzymes, microsomal lipids and lipid peroxidation in carbontetrachloride- treated rats. Pharmacol. Res.. 42:75-80.

Abd-El Gawad, H. M., Abdallah, A. M., El-Abhar, H. S. (2004). Rotenone-induced Parkinson’s like disease: Modulating role of coenzyme Q10. J. Biol. Sci. 4(4): 568-574.

Weichselbaum, T. E. (1946) An accurate and rapid method for determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Pathol. 16: 40-49.

Birch-Machin, M. A., Briggs, H. L., Saborido, A. A., Bindoff, L. A. and Turnbull. D. M. (1994). An evaluation of the measurement of the activities of Complexes I-IV in the respiratory chain of human skeletal muscle mitochondria. Biochem. Med. Metab. Biol. 51(1): 35-42.

Sadasivam, S. and Manickam, A. (2003). Biochemical methods, 2nd ed. New Delhi.

Abdel-Zaher, A. O., Abdel-Rahman, M. S, and ELwasei, F. M. (2011). Protective effect of Nigella sativa oil against tramadol-induced tolerance and dependence in mice: Role of nitric oxide and oxidative stress. Neurotoxicology 32:725-733.

Shiman, R., Akino, M.,,. and Kaufman, S. (1971) Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J. Biol. Chem. 246: 1330-40.

Craine, J. E., Hall, E. S. and Kaufman, S. (1972). The isolation and characterization of dihydropterine reductase from sheep liver. J. Biol. Chem. 247: 6082-91.

Guo, L., Zhang, Y. and Li, Q. (2009). Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III). Anal. Sci. 25(12): 1451-1455.

Holt, A., Sharman, D. F., Baker, G. B. and Palcic, M. M. (1997). A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal. Biochem. 244(2): 384-392.

Chaudhary, S. and Parvez, S. (2012). An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 225: 258-268.

Beutler, E., Duron, O. and Kelly, B. M. (1963). Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61: 882-888.

Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. and Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588-590.

Misra, H. P. and Fridovich, I. (1972). The univalent reduction of oxygen by reduced flavins and quinones. J. Biol. Chem. 247: 188-192.

Ohkawa, H., Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358.

Prajda, N. and Weber, N. (1975). Malignant transformation linked imbalance: decreased xanthine oxidase activity in hepatomas. Fed. Eur. Biochem. Soc. Lett. 59(2): 245-249.

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S. and Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464-478.

Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B. and van der Vliet, A. (1998). Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391: 393-397.

Muzuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K. and Sato, T. (1998). Deficiencies in complex 1 subunits of the respiratory chain in Parkinson disease. Biochem. Biophy. Res. Comm. 163: 1450-1455.

Higgins, D. S. and Greenamyre, J. T. (1996). [3H] dihydrorotenone binding to NADH: ubiquinone reductase (complex I) of the electron transport chain: an autoradiographic study. J. Neurosci. 16: 3807-3816.

Cannon, J. R. and Greenamyre, J. T. (2013). Gene-environment interactions in Parkinson’s disease: Specific evidence in humans and mammalian models. Neurobiol. Dis. 57: 38-46.

Terron, A., Bal-Price, A., Paini, A., Monnet-Tschudi, F., Bennekou, S. H., Members, E. W. E, Leist, M. and Schildknecht, S. (2018). An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch. Toxicol. 92: 41-82

Prasad, E. M. and Hung, S-Y. (2020). Behavioral tests in neurotoxin-induced animal models of Parkinson’s disease. Antioxidants 9: 1007.

Shults, C. W., Oakes, D., Kieburtz, K. and Beal, M. F, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M (2002) Effect of coenzyme Q10 in early Parkinson Disease. Arch. Neurol. 59: 1541-1550

Lee, B., Lee, H., Nam, Y. R., Oh, J. H., Cho, Y. H. and Chang, J. W. (2005). Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Therapy 12: 1215-1222

Nelson, D. L. and Cox, M. M. (2004). Biosynthesis of amino acid, nucleotides and related molecules. In: Lehninger (ed) Principles of biochemistry, 4th edn. University of Wisconsin-Madison, Wisconsin. pp 843-853.

Neidhardt, F. C. (1996). Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington DC.

Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A. and Robinson, J. P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278: 8516-8525.

Fato, R., Bergamini, C., Bortolus,, M., Maniero, A. L., Leoni, S., Ohnishi, T. and Lenaz, G. (2009). Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim. Biophys. Acta 1787: 384-392.

Onyema, K. I., Loikkanen, J., Eerikäinen, S. and Naarala, J. (2004). Glutamate-stimulated ROS production in neuronal cultures: interactions with lead and the cholinergic system. Neurotoxicology 19(4-5): 669-74

Bruce-Keller, A. J., Li, Y. J., Lovell, A., Kramer, P. J., Gray, D. S., Brown, R. R., Marksberry, W. R. and Mattson, M. P. (1998). 4-hydroxinonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rat. J Neuropathol. Exp. Neurol. 57: 257-267.

McCraken, E., Valeriani, V., Simpson, C., McCulloch, J. and Dewar, D. (2000). The lipid peroxidation product 4-hydroxynonenal is toxic to axons and oligodendrocytes. J. Cereb. Blood Flow Metab. 20: 1529-1536.

Montine, T. I., Amarnath, V., Martin, M. E., Strittmatter, W. J. and Graham, D. G. (1996). E-4-hydroxynonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglia cultures. Am. J. Pathol. 148: 89-93.

Chang, C. Y., Song, M. J., Jeon, S. B., Yoon, H. J. and Lee, D. K. (2011). Dual functionality of myeloperoxidase in rotenone-exposed brain-resident immune cells. Am. J. Pathol. 179: 964-979.

Ojo, O. B., Amoo, Z. A., Saliu, I. O., Olaleye M. T., Farombi, E. O. and Akinmoladun, A. C. (2019). Neurotherapeutic potential of kolaviron on neurotransmitter dysregulation, excitotoxicity, mitochondrial electron transport chain dysfunction and redox imbalance in 2-VO brain ischemia/reperfusion injury. Biomed. Pharmacother. 111:59–872.

Published

2022-12-31

Issue

Section

Full Length Research Articles

How to Cite

Comparative influence of kolaviron and coenzyme Q10 on complex I activity, glutamate clearance, 3,4-dihydroxyphenethylamine metabolism, and redox stress in rotenone-induced neurotoxicity. (2022). Nigerian Journal of Physiological Sciences, 37(2), 165-173. https://doi.org/10.54548/njps.v37i2.2