Antidepressant-Like Effects of Cinnamomum verum on Open-Space Forced Swim-Induced Depression in Mice
Click to view file (PDF)

Keywords

Cinnamon,
Depression
Cognitive impairment,
Immobility time,
Behavioural despair

How to Cite

Yusha’u, Y., Aminu Hanafi, A., & Muhammad Adam, U. (2023). Antidepressant-Like Effects of Cinnamomum verum on Open-Space Forced Swim-Induced Depression in Mice. Nigerian Journal of Physiological Sciences, 38(2), 223–227. https://doi.org/10.54548/njps.v38i2.11

Abstract

Depression is a mental disorder characterized by depressive episodes, such as low mood, low self-esteem, feeling of guilt, and poor concentration. Depression has a high comorbidity with cognitive impairments. Studies have shown that cinnamon has anti-inflammatory antiviral, antihypertensive, antioxidant and anti-diabetic potentials. Therefore, the aim of the research was to assess the antidepressant effect of cinnamon on open-space forced swim-induced depression in mice. Twenty-five (25) Swiss albino mice were grouped into five groups (n=5). Group I: control (negative control) exposed to open-space forced swim test (OSFST) without any treatment, Groups II, III and IV received graded doses of Cinnamon 12.5, 25, and 50 mg/kg, group 5 (positive control) received fluoxetine 20 mg/kg orally. The animals were subjected to OSFST, Open Field Test (Line Crossing) and Novel Object Recognition Test (NORT). Administration of cinnamon showed decreased immobility time (behavioural despair) in OSFST compared to control and fluoxetine groups (p < 0.05). However, no statistically significant effect was observed in line crossing (locomotor activity) and the discrimination ratio of NORT (non-spatial short-term memory) between cinnamon administered groups and the control group. In conclusion, cinnamon has shown antidepressant-like effect in open-space forced swim-induced depression in mice.

Keywords: Cinnamon, Depression, Cognitive impairment, Immobility time, Behavioural despair

https://doi.org/10.54548/njps.v38i2.11
Click to view file (PDF)

References

Abdeen, A., Abdelkader, A., Abdo, M., Wareth, G., Aboubakr, M., Aleya, L., and Abdel-Daim, M. (2018). Protective effect of cinnamon against acetaminophen-mediated cellular damage and apoptosis in renal tissue. Environmental Science and Pollution Research, 26(1): 240-249. https://doi.org/10.1007/s11356-018-3553-2

Bagewadi, H. G., Ak, A. K., & Shivaramegowda, R. M. (2015). An Experimental Study to Evaluate the Effect of Memantine in Animal Models of Anxiety in Swiss Albino Mice. 2–6. https://doi.org/10.7860/JCDR/2015/13233.6287

Bortolato, B., Miskowiak, K. W., Köhler, C. A., Maes, M., Fernandes, B. S., Berk, M., & Carvalho, A. F. (2016). Cognitive remission : a novel objective for the treatment of major depression ? BMC Medicine, 1–18. https://doi.org/10.1186/s12916-016-0560-3

Brent, D. A. (2016). A n t i d e p re s s a n t s a n d Suicidality. Psychiatric Clinics of NA, 39(3), 503–512. https://doi.org/10.1016/j.psc.2016.04.002

Calheiros, M., Silva, C., Nádia, C., Sousa, S. De, Xavier, P., Gomes, L., Valente, G., Oliveira, D., Yvelize, F., Araújo, R., Coelho, N., Calheiros, J., Silva, G., Kalyne, L., Moreira, A., Macêdo, D., Maria, S., & Vasconcelos, M. (2016). Progress in Neuro-Psychopharmacology & Biological Psychiatry Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Progress in Neuropsychopharmacology & Biological Psychiatry, 64, 142–148. https://doi.org/10.1016/j.pnpbp.2015.08.002

Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctôt, K. L. (2010). A Meta-Analysis of Cytokines in Major Depression. BPS, 67(5), 446–457. https://doi.org/10.1016/j.biopsych.2009.09.033

Favrod-coune, T., & Broers, B. (2010). The Health Effect of Psychostimulants: A Literature Review. 2333–2361. https://doi.org/10.3390/ph3072333

Hu, B., Doods, H., Treede, R., & Ceci, A. (2016). Neuroscience Letters Duloxetine and 8-OH-DPAT , but not fluoxetine , reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neuroscience Letters, 619, 162–167. https://doi.org/10.1016/j.neulet.2016.03.019

Jana, A., Modi, K. K., Roy, A., Anderson, J. A., & Breemen, R. B. Van. (2013). Up-Regulation of Neurotrophic Factors by Cinnamon and its Metabolite Sodium Benzoate : Therapeutic Implications for Neurodegenerative Disorders. 739–755. https://doi.org/10.1007/s11481-013-9447-7

Kalin, N. H. (2020). The Critical Relationship Between Anxiety and Depression. May, 365–367. https://doi.org/10.1176/appi.ajp.2020.20030305

Kawatra, P., & Rajagopalan, R. (2015). Cinnamon : Mystic powers of a minute ingredient. 7, 1–6. https://doi.org/10.4103/0974-8490.157990

Kelestemur, T., Yulug, B., Burak, A., & Caglar, M. (2016). Neuroscience Letters Targeting different pathophysiological events after traumatic brain injury in mice : Role of melatonin and memantine. Neuroscience Letters, 612, 92–97. https://doi.org/10.1016/j.neulet.2015.11.043

Khawam, E. A. (2006). Side effects of antidepressants : An overview. 73(4).

Martinowich, K., & Lu, B. (2008). Interaction between BDNF and Serotonin : Role in Mood Disorders. 73–83. https://doi.org/10.1038/sj.npp.1301571

Mustapha, S., Oshafu, M. Y., Adam, U. M., Yusha'u, Y., & Daku, A. B. (2021). Influence of Antidepressant Medication on Short Term Memory in Chronic Mild Stress Mouse Model of Depression. 12(1), 22–28.

Parisa, N., Tamzil, N. S., Arroyantri, B., & Maritska, Z. (2020). Antidepresant effects of Cinnamon ( Cinnamomum burmannii ) extract in depressed induced rats using 3-minutes Tail Suspension method Antidepresant effects of Cinnamon ( Cinnamomum burmannii ) extract in depressed induced rats using 3-minutes Tail Suspension method. August 2019. https://doi.org/10.32539/bsm.v3i3.91

Partan, R. U. M. I., Hidayat, R., Saleh, M. G. S. I., Parisa, N., & Tanzil, N. I. A. S. (2018). EFFECT OF SUPPLEMENTATION KAYU MANIS ( CINNAMOMUM BURMANNII ) EXTRACT IN NEURONAL CELL DEATH PROTECTION IN WISTAR RATS LIR-PSYCHOTIC ON HALOPERIDOL THERAPY. 11(2).

Santos, H. O., & Guilherme, A. R. (2018). Clinical Nutrition ESPEN To what extent does cinnamon administration improve the glycemic and lipid pro fi les ? Clinical Nutrition ESPEN, 1–9. https://doi.org/10.1016/j.clnesp.2018.07.011

Simplice, F. H., Emery, T. D., Abaissou, N., & Hervé, H. (2014). Enhancing Spatial Memory : Anxiolytic and Antidepressant Effects of Tapinanthus dodoneifolius ( DC ) Danser in Mice. 2014.

Thur, K. E., Nelson, A. J. D., & Cassaday, H. J. (2014). Ro 04-6790-induced cognitive enhancement : No effect in trace conditioning and novel object recognition procedures in adult male Wistar rats Pharmacology , Biochemistry and Behavior Ro 04-6790-induced cognitive enhancement : No effect in trace conditioning and novel object recognition procedures in adult male Wistar rats. November. https://doi.org/10.1016/j.pbb.2014.10.006

Wood, S., Sage, J. R., Shuman, T., & Anagnostaras, S. G. (2014). Psychostimulants and Cognition : A Continuum of Behavioral and Cognitive Activation. 15261(January), 193–221.

Yusha’u, Y., Muhammed, U. A., Nze, M., Egwuma, J. M., Igomu, O. J., and Abdulkadir, M. (2017). Modulatory Role of Rutin Supplement on Open Space Forced Swim Test Murine Model of Depression. 32(December), 201–205.

Yusha’u, Y, Mustapha, S., Umar, A. H., Imam, M. I., & Umar, B. (2021). Alpha-lipoic acid attenuates depressive symptoms in mice exposed to chronic unpredictable mild stress . 9(July), 58–68.

Yusha’u, Yusuf, Adam, U. M., Wahab, A. A., Ibrahim, M., & Saleh, A. (2021). OPEN ACCESS | RESEARCH NOTES Alpha-lipoic acid enhances short-term spatial memory of mice in open-space forced swim-induced depression mouse model.

Zhang, R., Xue, G., Wang, S., Zhang, L., Shi, C., & Xie, X. (2012). Novel Object Recognition as a Facile Behavior Test for Evaluating Drug Effects in A ␤ PP / PS1 Alzheimer ’ s Disease Mouse Model. 31, 801–812. https://doi.org/10.3233/JAD-2012-120151

Abdeen, A., Abdelkader, A., Abdo, M., Wareth, G., Aboubakr, M., Aleya, L., and Abdel-Daim, M. (2018). Protective effect of cinnamon against acetaminophen-mediated cellular damage and apoptosis in renal tissue. Environmental Science and Pollution Research, 26(1): 240-249. https://doi.org/10.1007/s11356-018-3553-2

Bagewadi, H. G., Ak, A. K., & Shivaramegowda, R. M. (2015). An Experimental Study to Evaluate the Effect of Memantine in Animal Models of Anxiety in Swiss Albino Mice. 2–6. https://doi.org/10.7860/JCDR/2015/13233.6287

Bortolato, B., Miskowiak, K. W., Köhler, C. A., Maes, M., Fernandes, B. S., Berk, M., & Carvalho, A. F. (2016). Cognitive remission : a novel objective for the treatment of major depression ? BMC Medicine, 1–18. https://doi.org/10.1186/s12916-016-0560-3

Brent, D. A. (2016). A n t i d e p re s s a n t s a n d Suicidality. Psychiatric Clinics of NA, 39(3), 503–512. https://doi.org/10.1016/j.psc.2016.04.002

Calheiros, M., Silva, C., Nádia, C., Sousa, S. De, Xavier, P., Gomes, L., Valente, G., Oliveira, D., Yvelize, F., Araújo, R., Coelho, N., Calheiros, J., Silva, G., Kalyne, L., Moreira, A., Macêdo, D., Maria, S., & Vasconcelos, M. (2016). Progress in Neuro-Psychopharmacology & Biological Psychiatry Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Progress in Neuropsychopharmacology & Biological Psychiatry, 64, 142–148. https://doi.org/10.1016/j.pnpbp.2015.08.002

Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctôt, K. L. (2010). A Meta-Analysis of Cytokines in Major Depression. BPS, 67(5), 446–457. https://doi.org/10.1016/j.biopsych.2009.09.033

Favrod-coune, T., & Broers, B. (2010). The Health Effect of Psychostimulants: A Literature Review. 2333–2361. https://doi.org/10.3390/ph3072333

Hu, B., Doods, H., Treede, R., & Ceci, A. (2016). Neuroscience Letters Duloxetine and 8-OH-DPAT , but not fluoxetine , reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neuroscience Letters, 619, 162–167. https://doi.org/10.1016/j.neulet.2016.03.019

Jana, A., Modi, K. K., Roy, A., Anderson, J. A., & Breemen, R. B. Van. (2013). Up-Regulation of Neurotrophic Factors by Cinnamon and its Metabolite Sodium Benzoate : Therapeutic Implications for Neurodegenerative Disorders. 739–755. https://doi.org/10.1007/s11481-013-9447-7

Kalin, N. H. (2020). The Critical Relationship Between Anxiety and Depression. May, 365–367. https://doi.org/10.1176/appi.ajp.2020.20030305

Kawatra, P., & Rajagopalan, R. (2015). Cinnamon : Mystic powers of a minute ingredient. 7, 1–6. https://doi.org/10.4103/0974-8490.157990

Kelestemur, T., Yulug, B., Burak, A., & Caglar, M. (2016). Neuroscience Letters Targeting different pathophysiological events after traumatic brain injury in mice : Role of melatonin and memantine. Neuroscience Letters, 612, 92–97. https://doi.org/10.1016/j.neulet.2015.11.043

Khawam, E. A. (2006). Side effects of antidepressants : An overview. 73(4).

Martinowich, K., & Lu, B. (2008). Interaction between BDNF and Serotonin : Role in Mood Disorders. 73–83. https://doi.org/10.1038/sj.npp.1301571

Mustapha, S., Oshafu, M. Y., Adam, U. M., Yusha'u, Y., & Daku, A. B. (2021). Influence of Antidepressant Medication on Short Term Memory in Chronic Mild Stress Mouse Model of Depression. 12(1), 22–28.

Parisa, N., Tamzil, N. S., Arroyantri, B., & Maritska, Z. (2020). Antidepresant effects of Cinnamon ( Cinnamomum burmannii ) extract in depressed induced rats using 3-minutes Tail Suspension method Antidepresant effects of Cinnamon ( Cinnamomum burmannii ) extract in depressed induced rats using 3-minutes Tail Suspension method. August 2019. https://doi.org/10.32539/bsm.v3i3.91

Partan, R. U. M. I., Hidayat, R., Saleh, M. G. S. I., Parisa, N., & Tanzil, N. I. A. S. (2018). EFFECT OF SUPPLEMENTATION KAYU MANIS ( CINNAMOMUM BURMANNII ) EXTRACT IN NEURONAL CELL DEATH PROTECTION IN WISTAR RATS LIR-PSYCHOTIC ON HALOPERIDOL THERAPY. 11(2).

Santos, H. O., & Guilherme, A. R. (2018). Clinical Nutrition ESPEN To what extent does cinnamon administration improve the glycemic and lipid pro fi les ? Clinical Nutrition ESPEN, 1–9. https://doi.org/10.1016/j.clnesp.2018.07.011

Simplice, F. H., Emery, T. D., Abaissou, N., & Hervé, H. (2014). Enhancing Spatial Memory : Anxiolytic and Antidepressant Effects of Tapinanthus dodoneifolius ( DC ) Danser in Mice. 2014.

Thur, K. E., Nelson, A. J. D., & Cassaday, H. J. (2014). Ro 04-6790-induced cognitive enhancement : No effect in trace conditioning and novel object recognition procedures in adult male Wistar rats Pharmacology , Biochemistry and Behavior Ro 04-6790-induced cognitive enhancement : No effect in trace conditioning and novel object recognition procedures in adult male Wistar rats. November. https://doi.org/10.1016/j.pbb.2014.10.006

Wood, S., Sage, J. R., Shuman, T., & Anagnostaras, S. G. (2014). Psychostimulants and Cognition : A Continuum of Behavioral and Cognitive Activation. 15261(January), 193–221.

Yusha’u, Y., Muhammed, U. A., Nze, M., Egwuma, J. M., Igomu, O. J., and Abdulkadir, M. (2017). Modulatory Role of Rutin Supplement on Open Space Forced Swim Test Murine Model of Depression. 32(December), 201–205.

Yusha’u, Y, Mustapha, S., Umar, A. H., Imam, M. I., & Umar, B. (2021). Alpha-lipoic acid attenuates depressive symptoms in mice exposed to chronic unpredictable mild stress . 9(July), 58–68.

Yusha’u, Yusuf, Adam, U. M., Wahab, A. A., Ibrahim, M., & Saleh, A. (2021). OPEN ACCESS | RESEARCH NOTES Alpha-lipoic acid enhances short-term spatial memory of mice in open-space forced swim-induced depression mouse model.

Zhang, R., Xue, G., Wang, S., Zhang, L., Shi, C., & Xie, X. (2012). Novel Object Recognition as a Facile Behavior Test for Evaluating Drug Effects in A ␤ PP / PS1 Alzheimer ’ s Disease Mouse Model. 31, 801–812. https://doi.org/10.3233/JAD-2012-120151

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Nigerian Journal of Physiological Sciences