Morphological, Biochemical and Molecular Docking Evaluation of the Anti-inflammatory Effects of Methanolic Extract of Bridelia ferruginea stem bark on Acetic acid-induced Ulcerative Colitis in Rats

How to Cite

Oluwagbamila, O. B. ., Adeniran, A., Adeniran, K., Abioye, A., & Nathaniel-Ukwa, E. (2023). Morphological, Biochemical and Molecular Docking Evaluation of the Anti-inflammatory Effects of Methanolic Extract of Bridelia ferruginea stem bark on Acetic acid-induced Ulcerative Colitis in Rats . Nigerian Journal of Physiological Sciences, 38(1), 79–89.


Ulcerative colitis (UC) is a chronic disorder that involves inflammation. This study was carried out to examine the anti-inflammatory effect of the methanol extract of Brideliaferrugineastem barkinAcetic acid-induced ulcerative colitis inmaleWistarrats. Twenty-four rats were randomly divided into 6 groups of 4 animals each, colitis was thereafter induced by intrarectal administration of4% (v/v)Aceticacidin all except group 1, which received distilled water. For post-colitis induction treatment group 2 received distilled water, groups 3, 4 and 5 were orally administeredthe extract at doses of 100mg/kg, 200mg/kg and 400mg/kg, respectively while group 6 received sulfasalazine 500mg/kg orally.Post colitis induction, treatment lasted for 7 days and at the end of the experiment, colon samples were collected for estimation of antioxidant, inflammatory and histological parameters. Molecular docking study was also carried out to gain more insights about the promising anti-inflammatory compounds earlier identified in the extract.Results revealed that the extract significantly (p<0.05) attenuated the increased MDA, nitrite,TNF-α and IL-6 levels. Activities of SOD, CAT, MPO and GSH levelswere also, significantly (p<0.05) increased. Furthermore, molecular docking study revealed that α-amyrin may have contributed significantly to the anti-inflammatory activity of the extract because of its remarkable binding affinity for IL-6, iNOS, IL1-β,TNF-α and COX-2 relative to prednisolone and celecoxib. This study suggests that the extract attenuated acetic acid-induced colitis via antioxidative and anti-inflammatory mechanisms.



Achitei, D. ., Ciobica, A. ., Balan, G. ., Gologan, E. ., Stanciu, C. ., & Stefanescu, G. (2013). Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci., 58, 1244–1249.

Adetutu, A., Morgan, W., & Corcoran, O. (2011). Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridellia ferrigunea leaf, a wound healing plant of Nigeria. Journal of Ethnopharmacology, 133(1), 116-119.

Akuodor, G., Mbah, C., Anyalewechi, N., Idris-Usman, M., Iwuanyanwu, T., & Osunkwo, U. (2011). Pharmacological profile of aqueous extract of Brideliaferrugineastem bark in the relief in the relief of pain and fever. J. Med Plants Res, 5(22), 5366–5369.

Alatise, O. ., Otegbayo, J. ., Nwosu, M. ., Lawal, O. ., Ola, S. ., Anyanwu, S. ., Ndububa, D. ., Akere, A., Odike, M. ., Agbakwuru, E. ., Soyemi, O. ., & Okonkwo, U. . (2012). Characteristics of inflammatory bowel disease in three tertiary health centers in southern Nigeria. West African Journal of Medicine, 31(1), 28–33.

Aleisa, A. ., Al-Rejaie, S. S., Abuohashish, H. M., Ola, M. S., Parmar, M. Y., & Ahmed, M. M. (2014). Pretreatment of Gymnemasylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats. BMC Complementary and Alternative Medicine, 14(1).

Alese, O. ., & Irabor, D. . (2008). Pyoderma gangrenosum and ulcerative colitis in the tropics. Rev Soc. Bras. Med. Trop, 41, 6647.

Ali, A. A., Abd al Haleem, E. N., Khaleel, S. A. H., & Sallam, A. S. (2017). Protective effect of cardamonin against acetic acid induced ulcerative colitis in rats. Pharmacological Reports, 69(2), 268–275.

Baldo, D. E. B., & Serrano, J. E. (2017). Screening for intestinal anti-inflammatory activity of Alpinia galanga against acetic acid induced colitis in mice (Mus musculus). Journal of Medicinal Plants Studies, 4(1), 72–77.

Baumgart, D. ., & Sandborn, W. . (2007). Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet, 369(9573), 1641–1657.

Brigelius-Flohe, R., & Kipp, A. (2012). Physiological functions of GPx2 and its role in inflammation-triggered carcinogenesis. Ann N Y AcadSci, 1259, 19–25.

Chavan, S., Sava, L., Saxena, V., Pillai, S., Sontakke, A., & Ingole, D. (2005). Reduced glutathione: importance of specimen collection. Indian J ClinBiochem, 20, 150–152.

Chen, Y. ., Hashiguchi, N. ., Yip, L. ., & Junger, W. G. (2006). Hypertonic saline enhances neutrophil elastase release through activation of P2 and A3 receptors. Am. J. Physiol., 209, C1051–C1059.

Cross, R. ., & Wilson, K. T. (2003). Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis, 9, 79–189.

Ford, A., Moayyedi, P., & Hanauer, S. (2013). Ulcerative colitis. BMJ, 5, 432–346.

Garber, J., Barbee, R., Bielitzki, J., Clayton, L., & Donovan, J. (2011). The guide for the care and use of laboratory animals (8th ed.). Institute for Laboratory Animal Research The National Academic Press).

Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2–3), 143–151.

Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126(1), 131–138.

Guan, Q., & Zhang, J. (2017). Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators of Inflammation, 2017, 4810258.

Hartmann, R. M., Morgan, M. I., Tieppo, J., Fillmann, H. S., & Marroni, N. . (2012). Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid. Digestive Diseases and Sciences, 57(8), 2038–2044.

Hoskin, T. S., Crowther, J. M., Cheung, J., Epton, M. J., Sly, P. D., Elder, P. A., Dobson, R. C. J., Kettle, A. J., & Dickerhof, N. (2019). Oxidative cross-linking of calprotectin occurs in vivo, altering its structure and susceptibility to proteolysis. Redox Biol, 24, 101202.

Jollow, D. ., Mitchell, J. ., Zampaghone, N., & Gillete, J. R. (1974). Bromobenzene induced liver necrosis, protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 11, 151–169.

Kaser, A., Zeissig, S., & Blumbery, R. S. (2010). Inflammatory bowel diseases. Ann Rev Immunol, 28, 573-621.

Loftus Jr, E. . (2004). Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence and environmental influences. Gastroenterology, 369, 1641–1657.

Medeiros, R., Otuki, M. F., Avellar, M. C. W., & Calixto, J. B. (2007). Mechanisms underlying the inhibitory actions of the pentacyclic triterpene α-amyrin in the mouse skin inflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13-acetate. European Journal of Pharmacology, 559(2–3), 227–235.

Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170–3175.

Molodecky, N. ., Soon, I. ., Rabi, D. ., Ghali, W. ., Ferris, M., & Chernoff, G. (2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology, 142(1), 46–54.

Nagababu, E., Rifkind, J. M., Boindala, S., & Nakka, L. (2010). Assessment of antioxidant activity of eugenol in vitro and in vivo. In In Free Radicals and Antioxidant Protocols (pp. 165–180).

Nemeth, Z. H., Bogdanovski, D. A., Barratt-Stopper, P., Paglinco, S. R., Antonioli, L., & Rolandelli, R. H. (2017). Crohn’s disease and ulcerative colitis show unique cytokine profiles. Cureus, 9(4), 1177.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An Open chemical toolbox. Journal of Cheminformatics, 3(10), 33.

Obaseki, D. ., & Forae, G. D. (2014). Clinicopathological features of inflammatory bowel disease in Benin City, Nigeria. Int J Adv Med Health Res, 1, 16–19.

Okoye, N. N., Ajaghaku, D. L., Okeke, H. N., Ilodigwe, E. E., Nworu, C. S., & Okoye, F. B. C. (2014). Beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharmaceutical Biology, 52(11), 1478–1486.

Olajide, O. ., Makinde, J. ., Okpako, D. ., & Awe, S. . (2000). Studies on the anti-inflammatory and related pharmacological properties of the aqueous extract of Bridelia ferruginea stem bark. Journal of Ethnopharmacology, 71(1–2), 153–160.

Olajide, O. ., Okpako, D. ., & Makinde, J. . (2003). Antiinflammatory properties of Bridelia ferruginea stem bark: Inhibition of lipopolysaccaride-induced septic shock and vascular permeability. Journal of Ethnopharmacology, 88(2–3), 221–224.

Oludara, M., Akinola, R., Popoola, A., & Makanjuola, S. (2014). Inflammatory bowel disease, a rare or under diagnosed disease in Nigeria. British Journal of Medicine & Medical Research, 4(35), 5620–5628.

Omolaso, B. O., Adesanwo, J. K., Ishola, A. A., Adegoke, A. G., Akingbule, F. O., & Ipadeola, Y. A. (2021). Antidiarrheal activity of Bridelia ferruginea bark methanolic extract involves modulation ATPases in mice and inhibition of muscarinic acetylcholine receptor ( M3 ) and prostaglandin E2 receptor 3 ( EP 3 ) in silico.

Owen, K. A., Abshire, M. Y., Tilghman, R. W., Casanova, J. E., & Bouton, A. H. (2011). FAK regulates intestinal epithelial cell survival andproliferation during mucosal wound healing. PLoS One, 6, e23123.

Podolsky, D. . (2002). Inflammatory bowel disease. . . The New England Journal of Medicine, 347(6), 417–429.

Rana, S. V., Sharma, S., Prasad, K. K., Sinha, S. K., & Singh, K. (2014). Role of oxidative stress & antioxidant defence in ulcerative colitis patients from north India. The Indian Journal of Medical Research, 139(4), 568–571.

Rosas, C. E., Correa, L. B., & Henriques, M. G. (2017). Neutrophils in rheumatoid arthritis: a target for discovering new therapies based on natural products. In Role of Neutrophils in Disease Pathogenesis (pp. 89–118). IntechOpen Limited.

Sentellas, S., Morales-Ibanez, O., Zanuy, M., & Albert, J. (2014). GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress. Toxicol In Vitro, 28, 1006–1015.

Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

Vitor, C. E., Figueiredo, C. P., Hara, D. B., Bento, A. F., Mazzuco, T. L., & Calixto, J. B. (2009). Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α- and b -amyrin, in a mouse model of colitis. British Journal of Pharmacology, 2, 1034–1044.

Wanderås, M. ., Moum, B. ., Høivik, M. ., & Hovde, Ø. (2016). Predictive factors for a severe clinical course in ulcerative colitis: Results from population-based studies. World Journal of Gastrointestinal Pharmacology and Therapeutics, 7(2), 235–241.

Yukitake, H., Kimura, H., Suzuki, H., Tajima, Y., & Sato, Y. (2011). BT30-15 an are-Activator Ameliorates DSS-and TNBS-induced colitis in rats. Plos One, 6(8), e23256.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Nigerian Journal of Physiological Sciences