Hypoglycemic, Hypolipidemic and Antioxidant Potentials of Ethanolic Stem Bark Extract of Anacardium occidentale in Streptozotocin-Induced Diabetic Rats
Click to view file (PDF)

How to Cite

Bamisaye, F. A., Ibrahim, R. A., Sulyman, A., Jubril, A., & Ajuwon, O. (2022). Hypoglycemic, Hypolipidemic and Antioxidant Potentials of Ethanolic Stem Bark Extract of Anacardium occidentale in Streptozotocin-Induced Diabetic Rats. Nigerian Journal of Physiological Sciences, 37(1), 137–145. https://doi.org/10.54548/njps.v37i1.17

Abstract

Diabetes mellitus is one of the most widespread diseases affecting the world’s population causing substantial morbidity, mortality and long-term complications. This study was designed to investigate possible hypoglycemic, hypolipidemic and antioxidant effect of ethanolic stem bark extract of Anacardium occidentale in streptozotocin (STZ)-induced diabetic rats. Twenty-eight STZ (60 mg/kg body weight)-induced diabetic, male albino rats were randomly distributed into Groups II-V (7 rats each) and orally administered with water, metformin (14.2 mg/kg), 200 mg/kg Anacardium occidentale extract and 400 mg/kg Anacardium occidentale extract respectively daily for 15 days. Group I rats were untreated with STZ and serves as control all under the same sham handling. Blood samples were taken for measurement of fasting blood glucose (FBG) and lipid profile. Liver and kidney tissue samples were taken for determination of glycemic indices (glucose and glycogen), as well as redox status markers such as malondialdehyde (MDA), total glutathione (GSH), activities of superoxide dismutase (SOD) and glutathione-s-transferase (GST). Results showed that treatment with 200 and 400 mg/kg Anacardium occidentale stem bark extract reversed hyperglycemia and hyperlipidemia induced by STZ similar to what was observed with the standard drug, metformin. Similarly, both extract concentration produced a significant reduction in MDA while the activity of SOD and GST, as well as concentration of GSH were elevated. This study suggested that ethanolic stem bark extract of Anacardium occidentale at 200 and 400 mg/kg can ameliorate diabetes and its associated complications via its hypoglycemic, hypolipidemic, antioxidant and free radical scavenging properties

https://doi.org/10.54548/njps.v37i1.17
Click to view file (PDF)

References

Agedah, C.E., Bawo, D.D.S. and Nyananyo, B.L. (2010). Identification of antimicrobial properties of cashew, Anacardium occidentale L. (Family Anacardiaceae). J. Appl. Sci. Environ. Manage. 14(3): 25-27.

Ahmed, D., Kumar, V., Verma, A., Gupta, P.S., Kumar, H., Dhingra, V., Mishra, V. and Sharma, M. (2014): Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats. BMC Complement Altern Med. 14: 243.

Ajuwon, O.R., Ayeleso, A.O. and Adefolaju, G.A. (2018). The potential of South African herbal tisanes, rooibos and honeybush in the management of type 2 diabetes mellitus. Molecules 23: 3207.

Akindele, O.O., Kunle-Alabi, O.T., Udofia, U.A., Ahmed, T.T. and Raji, Y. (2015). Maternal hyperglycemia at different stages of gestation and its effects on male reproductive functions in rats. J. Dev. Orig. Health Dis. 6(6): 512-519.

Alkan, E.E. and Celik, I. (2018). The therapeutics effects and toxic risk of Heracleum persicum Desf. extract on streptozotocin-induced diabetic rats. Toxicol. Rep. 5: 919-926.

Anyaegbu, O.C., Ajayi, A.M. and Adedapo, A.D. (2017). Hypolipidemic and antioxidant effects of the methanolic stem bark extract of Anacardium occidentale Linn. in Triton-X 100 induced hyperlipidemic rats. Orient. Pharm. Exp. Med. 17(3): 211-221.

Asrafuzzaman, M., Cao, Y., Afroz, R., Kamato, D., Gray, S. and Little, P.J. (2017). Animal models for assessing the impact of natural products on the etiology and metabolic pathophysiology of type 2 diabetes. Biomed. Pharmacother. 89: 1242-1251.

Baena-Díez, J.M., Félix, F.J., Grau, M., Cabrera de León, A., Sanz, H., Leal, M. et al. (2011). Risk factor treatment and control in relation to coronary disease risk in the Spanish population of the DARIOS Study 2011. Rev. Esp. Cardiol. 64(9):766–773.

Bassey, T., Eliakim-Ikechukwu, C. and Ihentuge, C. (2012). Effect of ethanolic stem-bark extract of Anacardium occidentale (cashew) on the histology of the pancreas of diabetic Wistar rats. JEBAS 2: 153–156.

Behravan. E., Heidari, M.R., Heidari, M., Fatemi, G., Etemad, L., Taghipour, G. and Abbasifard, M. (2012). Comparison of gastric ulcerogenicity of percolated extract of Anacardium occidentale (cashew nut) with indomethacin in rats. Pak. J. Pharm. Sci. 25:111-115.

Beuge, J.A. and Aust, S.D. (1978). Microsomal lipid peroxidation. Methods Enzymol. 52: 302-305.

Boyne, A.F. and Ellman, G.L. (1972). A methodology for analysis of tissue sulphydryl components. Anal. Biochem. 46: 639-653.

Dahiru, T., Aliyu, A.A and Sheu. A.U. (2016). A review of population-based studies on diabetes mellitus in Nigeria. Sub-Saharan Afr. J. Med. 3(2): 59-64.

Das, K., Samanta, L. and Chainy, G.B.N. (2000). A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Ind. J. Biochem. Biophys. 37: 201-204.

Encarnacao, S., Malmir, M., Sousa, D., Silva, I.M., Mello-Sampayo, C., Serrano, R., Lima, B. and Silva, O. (2014). Phenol content, antioxidant, α- and β-glucosidase inhibitory activities of an Anacardium occidentale stem bark traditional herbal preparation. Planta Med. 80: P2B42

Encarnacao, S., Mello-Sampayo, C., Graca, N.A.G., Catarino, L., Silva, I.B.M., Lima, M.S. and Silva, O.D. (2016). Total phenolic content, antioxidant activity and pre-clinical safety evaluation of Anacardium occidentale stem bark Portuguese hypoglycaemic traditional herbal preparation. Ind. Crop Prod. 82: 171–178.

Fiorentino, T.V., Prioletta, A., Zuo, P. and Folli, F. (2013). Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular disesaes. Curr. Pharma. Des. 19(32): 5695-5703.

Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974). Glutathione transferase: a first enzymatic step in mercapturic acid and formation, J. Biol. Chem. 249: 7130-7139.

International Diabetes Federation. (2017). IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium. Available online: http://www.diabetesatlas.org (accessed on 27 July 2019).

Karunakaran, U. and Park, K.G. (2013). A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense. Diabetes Metab. J. 37: 106–112.

Kim, J.A., Wei, Y. and Sowers, J.R. (2008). Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102: 401–414.

King, A. and Bowe, J. (2016). Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem. Pharmacol. 99: 1-10.

Kono, Y. and Fridovich, I. (1982). Superoxide radical inhibits catalase. J. Biol. Chem. 257: 5751-5754.

Loven, D., Schedl, H., Wilson, H., Daabees, T.T., Stegink, L.D., Diekus, M. (1986). Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozotocin induced diabetes. Diabetes 35: 503–507.

Melo-Cavalcante, A.A., Dantas, S.M., Leite Ade, S., Matos, L.A.E., Sousa, J.M., Picada, J.N. and Da Silva, J. (2011): In vivo antigenotoxic and anticlastogenic effects of fresh and processed cashew (Anacardium occidentale) apple juices. J. Med. Food 14:792-798.

Miranda-Osorio, P.H., Castell-Rodríguez, A.E., Vargas-Mancilla, J., TovillaZárate, C.A., Ble-Castillo, J.L., Aguilar-Domínguez, D.E., Juárez-Rojop, I.E. and Díaz-Zagoya, J.C. (2016). Protective action of Carica papaya on β-cells in streptozotocin-induced diabetic rats. Int. J. Environ. Res. Public Health 13(5): 446.

Musabayane, C.T., Mahlalela, N., Shode, F.O. and Ojewole, J.A.O. (2005). Effects of Syzygium cordatum (Hochst.) [Myrtaceae] leaf extract on plasma glucose and hepatic glycogen in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 97: 485-490.

Nain, P., Saini, V., Sharma, S. and Nain, J. (2012). Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J. Ethnopharmacol. 142: 65-71.

Niedowicz, D.M. and Daleke, D.L. (2005). The role of oxidative stress in diabetes complications. Cell Biochem. Biophys. 43: 289–330.

Olajide, O.A., Aderogba, M.A., Adedapo, A.D. and Makinde, J.M. (2004). Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. J. Ethnopharmacol. 95:139-142.

Olatunji, L.A., Okwusidi, J.I. and Soladoye, A.O. (2005). Antidiabetic effect of Anacardium occidentale. Stem-bark in fructose-diabetic rats. Pharm. Biol. 43(7): 589-593.

Palmer, A., Thomas, C.R., Gopaul, N., Dhir, S., Änggård, E.E., Poston, L. and Tribe, R.M. (1998). Dietary antioxidant supplementation reduces lipid peroxidation but impairs vascular function in small mesenteric arteries of the streptozotocin-diabetic rat. Diabetologia 41: 148-156.

Palsamy, P., Sivakumar, S. and Subramanian, S. (2010). Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin–nicotinamide-induced experimental diabetic rats. Chem. Biol. Interact. 186(2): 200-210.

Rena, G., Hardie, D.G. and Pearson, E.R. (2017). The mechanisms of action of metformin. Diabetologia 60: 1577-1585.

Robertson, R.E., Zhang, H-J., Pyzdrowski, K.L. and Walseth, T.F. (1992). Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J. Clin. Invest. 90, 320–325.

Saidu, A.N., Mann, A. and Balogun, S. (2012). The hypoglycemic effect of aqueous extract of the Anacardium occidentale Linn leaves grown in Nigeria on normoglycemic albino rats. J. Emerg. Trends Eng. Appl. Sci. 3(2): 302-308

Subash Babu, P., Prabuseenivasan, S. and Ignacimuthu, S. (2007). Cinnamaldehyde - A potential antidiabetic agent. Phytomedicine 14: 15-22.

Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6: 24-27.

Uddandrao, V.S., Brahmanaidu, P., Ravindarnaik, R., Suresh, P., Vadivukkarasi, S. and Saravanan, G. (2019). Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin–nicotinamide-induced diabetic rats. Eur. J. Nutr. 58(6): 2425-2437.

Van Dam, P.S., Van Asbeck, B.S., Van Oirschot, J.F., Biessels, G.J., Hamers, F.P. and Marx, J.J. (2001). Glutathione and α-lipoate in diabetic rats: nerve function, blood flow and oxidative state. Eur. J. Clin. Invest. 31: 417-424.

Wali, J.A., Rondas, D., McKenzie, M.D., Zhao, Y., Elkerbout, L., Fynch, S., Gurzov, E.N., Akira, S., Mathieu, C., Kay, T.W.H., Overbergh, L., Strasser, A. and Thomas, H.E. (2014). The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis. 5: e1124.

Watcho, P., Gildas, A.J.H., Ulrich, M.C., Modeste, W.N., Télesphore Benoît, N. and Albert, K. (2012). Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complement. Altern. Med. 12(1): 264.

Xu, L., Li, Y., Dai, Y. and Peng, J. (2018). Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 130: 451-465.

Yan, H. and Harding, J.J. (1997). Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem. J. 328(2): 599-605.

Yang, X., Feng, L., Li, C. and Li, Y. (2014). Tranilast alleviates endothelial dysfunctions and insulin resistance via preserving glutathione peroxidase-1 in rats fed a high-fat emulsion. J. Pharmacol. Sci. 124: 18–30.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Nigerian Journal of Physiological Sciences