Gestational Nutrition as a Predisposing Factor to Obesity Onset in Offspring: Role for Involvement of Epigenetic Mechanism
Click to view file (PDF)

How to Cite

Jeje, S. O., Adenawoola, M., & Abosede, C. (2022). Gestational Nutrition as a Predisposing Factor to Obesity Onset in Offspring: Role for Involvement of Epigenetic Mechanism. Nigerian Journal of Physiological Sciences, 37(1), 1–7. https://doi.org/10.54548/njps.v37i1.1

Abstract

Maternal lifestyle has been implicated as a predisposing factor in the development of metabolic disorders in adulthood. This lifestyle includes the immediate environment, physical activity and nutrition. Maternal nutrition has direct influence on the developmental programming through biochemical alterations and can lead to modifications in the fetal genome through epigenetic mechanisms. Imbalance in basic micro or macro nutrients due to famine or food deficiency during delicate gestational periods can lead to onset of metabolic syndrome including obesity. A major example is the Dutch famine which led to a serious metabolic disorder in adulthood of affected infants. Notably due to gene variants, individualized responses to nutritional deficiencies are unconventional, therefore intensifying the need to study nutritional genomics during fetal programming. Epigenetic mechanisms can cause hereditary changes without changing the DNA sequence; the major mechanisms include small non-coding RNAs, histone modifications and most stable of all is DNA methylation. The significance association between obesity and DNA methylation is through regulation of genes implicated in lipid and glucose metabolism either directly or indirectly by hypomethylation or hypermethylation. Examples include CPT1A, APOA2, ADRB3 and POMC. Any maternal exposure to malnutrition or overnutrition that can affect genes regulating major metabolic pathways in the fetus, will eventually cause underlying changes that can predispose or cause the onset of metabolic disorder in adulthood. In this review, we examined the interaction between nutrition during gestation and epigenetic programming of metabolic syndrome. 

https://doi.org/10.54548/njps.v37i1.1
Click to view file (PDF)

References

REFERENCES

Armitage JA, Poston L, Taylor PD. (2008). Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res. 36: 73-84.

Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, Sha J, Pankow JS, Liu C, Irvin MR, Fornage M, Hidalgo B, Lin LA, Thibeault KS, Bressler J, Tsai MY, Grove ML, Hopkins PN, Boerwinkle E, Borecki IB, Ordovas JM, Levy D, Tiwari HK, Absher DM, Arnett DK. (2015). Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity. 23:1493–1501.

Auclair G, Weber M. (2012). Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 94:2202–2211.

Blackmore HL, Ozanne SE. (2013). Maternal diet-induced obesity and offspring cardiovascular health. J Dev Orig Health Dis. 4:338–347.

Chen YC, Chen PC, Hsieh WS, Portnov BA, Chen YA, Lee YL. (2012). Environmental factors associated with overweight and obesity in taiwanese children. Paediatr Perinat Epidemiol. 26:561–571.

Dayeh D, Heianza Y, Li X, Shang X, Smith SR, Bray GA, Sacks FM, Qi L. (2018). Genetic, epigenetic and transcriptional variations at NFATC2IP locus with weight loss in response to diet interventions: the POUNDS lost trial. Diabetes Obes Metab. 20:2298–2303.

Dayeh T, Tuomi T, Almgren P, Perfilyev A, Jansson PA, de Mello VD, Pihlajamäki J, Vaag A, Groop L, Nilsson E, Ling C. (2016). DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics. 11:482–488.

Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, Hedman AK, Sandling JK, Li LA, Irvin MR, Zhi D, Deloukas P, Liang L, Liu C, Bressler J, Spector TD, North K, Li Y, Absher DM, Levy D, Arnett DK, Fornage M, Pankow JS, Boerwinkle E. (2015) Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet 24:4464–4479. https://doi.org/10.1093/hmg/ddv16

Devlin MJ, Bouxsein ML (2012). Influence of pre- and peri-natal nutrition on skeletal acquisition and maintenance. Bone 50(2):444–451.

Desai M, Jellyman JK, Ross MG. (2015). Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes. 39(4):633-641. doi:10.1038/ijo.2015.13

Desai M, Gayle D, Han G, Ross MG. (2007). Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci. 14:329–337.

Dolan MS, Sorkin JD, Hoffman DJ. (2007). Birth weight is inversely associated with central adipose tissue in healthy children and adolescents. Obesity (Silver Spring). 15:1600–1608.

Dolinoy DC, Weidman JR, Jirtle R. (2007). Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 23:297–307.

Dunstan J, Bressler JP, Moran TH, Pollak JS, Hirsch AG, Bailey-Davis L, Glass TA, Schwartz BS. (2017). Associations of LEP, CRH, ICAM-1, and LINE-1 methylation, measured in saliva, with waist circumference, body mass index, and percent body fat in mid-childhood. Clin Epigenetics. 9:29.

Esguerra JLS, Mollet IG, Salunkhe VA, Wendt A, Eliasson L. (2014). Regulation of pancreatic beta cell stimulus-secretion coupling by microRNAs. Genes (Basel). 5:1018–1031.

Freinkel, N. (1980). Banting Lecture 1980: of Pregnancy and Progeny Diabetes. 29, 1023–1035

Fujiki K, Kano F, Shiota K, Murata M. (2009). Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 7: 38.

Gagné-Ouellet V, Houde AA, Guay SP, Perron P, Gaudet D, Guerin R, Jean-Patrice B, Hivert MF, Brisson D, Bouchard L. (2017). Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age. Epigenetics. 12:616–625.

Gallou-Kabani, C. and Junien, C. (2005). Nutritional Epigenomics of Metabolic Syndrome New Perspective Against the Epidemic Diabetes. 54, 1899–1906.

Galtier-Dereure F, Boegner C, Bringer J. (2000). Obesity and pregnancy: complications and cost. Am J Clin Nutr. 71:1242S–1248S.

Guarino E, Delli Poggi C, Grieco GE, Cenci V, Ceccarelli E, Crisci I, Sebastiani G, Dotta F. (2018). Circulating MicroRNAs as biomarkers of gestational diabetes mellitus: updates and perspectives. Int J Endocrinol. 2018:6380463.

Guay SP, Brisson D, Lamarche B, Biron S, Lescelleur O, Biertho L, Marceau S, Vohl MC, Gaudet D, Bouchard L. (2014). ADRB3 gene promoter DNA methylation in blood and visceral adipose tissue is associated with metabolic disturbances in men. Epigenomics. 6:33–43.

Harding, J.E. and Johnston, B.M. (1995). Nutrition and Fetal Growth. Reprod. Fertil. Dev. 7, 539–547

Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P, Gray K, Landrigan PJ, Sly PD, Suk W, Cory Slechta D, Thompson C, Hanson M. (2015). Developmental Origins of Health and Disease: Integrating Environmental Influences. Endocrinology. 156:3416.

Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008; 105(44): 17046-9.

Howie GJ, Sloboda DM, Kamal T, Vickers MH. (2009). Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol. 587(Pt 4): 905 15.

Hytten, FE. Chamberlain, G (1980). Clinical physiology in obstetrics. Blackwell Scientific Publications; Blackwell Mosby Book Distributors; Oxford; Boston: 1980.

Ibarra A, Vega-Guedes B, Brito-Casillas Y, Wagner AM. (2018). Diabetes in pregnancy and MicroRNAs: promises and limitations in their clinical application. Noncoding RNA. 4(4):pii: E32.

Ikenasio-Thorpe BA, Breier BH, Vickers MH, Fraser M. (2007). Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J Endocrinol. 193:31–37.

Innis SM (2011). Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. Suppl 2:112–123.

Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, Liang L, Chen BH, Yao C, Tiwari HK, Ordovas JM, Levy D, Absher D, Arnett DK. (2014). Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation. 130:565–572.

Jimenez-Chillaron JC, Hernandez-Valencia M, Lightner A, Faucette RR, Reamer C, Przybyla R, Ruest S, Barry K, Otis JP, Patti ME. (2006). Reductions in caloric intake and early postnatal growth prevent glucose intolerance and obesity associated with low birthweight. Diabetologia. 49:1974–1984.

Kaspi H, Pasvolsky R, Hornstein E. (2014). Could microRNAs contribute to the maintenance of b cell identity? Trends Endocrinol Metab. 25:285–292.

Kouzarides T. (2007). Chromatin modifications and their function. Cell. 128:693–705.

Kuhnen P, Handke D, Waterland RA, Hennig BJ, Silver M, Fulford AJ, Dominguez-Salas P, Moore SE, Prentice AM, Spranger J, Hinney A, Hebebrand J, Heppner FL, Walzer L, Grötzinger C, Gromoll J, Wiegand S, Grüters A, Krude H. (2016) Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab 24:502–509. https://doi.org/10.1016/j.cmet.2016.08.001

Lawrence M, Daujat S, Schneider R. (2016). Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 32:42–56.

Lin X, Lim IY, Wu Y, Teh AL, Chen L, Aris IM, Soh SE, Tint MT, MacIsaac JL, Morin AM, Yap F, Tan KH, Saw SM, Kobor MS, Meaney MJ, Godfrey KM, Chong YS, Holbrook JD, Lee YS, Gluckman PD, Karnani N; GUSTO study group. (2017). Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med. 2017;15:50.

Liyanage VR, Jarmasz JS, Murugeshan N, Marc RD, Mojgan R, James R. (2014). DNA modifications: function and applications in normal and disease States. Biology (Basel). 3:670–723.

Lukas, A. (1991) in The Childhood Environment and Adult Disease (Bock, G.R. and Whelan, J., eds.), pp. 38–55, Wiley, Chichester, U.K.

Malgorzata S, Martin-Gronert, Ozanne SE (2010). Mechanisms linking suboptimal early nutrition and increased risk of type 2 diabetes and obesity. J Nutr. 140(3):662–666.

Marsal, K. (2002). Intrauterine Growth Restriction. Curr. Opin. Obstet. Gynecol. 14, 127–135

Martinez D, Pentinat T, Ribó S, Daviaud C, Bloks VW, Cebriá J, Villalmanzo N, Kalko SG, Ramon-Krauel M, Diaz R, Plosch T, Tost J, Jimenez-Chillaron JC (2014). In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation. Cell Metab. 19(6):941–951.

McMillen IC, Robinson JS. (2005). Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 85(2): 571-633.

Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA. (2009). High Fat Diet-induced Obesity Modifies the Methylation Pattern of Leptin Promoter in Rats. J Physiol Biochem. 65(1): 1-9.

Moleres A, Ochoa MC, Rendo-Urteaga T, Martinez-Gonzalez MA, Azcona San Julian MC, Martinez JA, Marti A. (2012). Dietary fatty acid distribution modifies obesity risk linked to the rs9939609 polymorphism of the fat mass and obesity-associated gene in a Spanish case-control study of children. Br J Nutr. 107:533–538.

Monteiro PO, Victora CG. (2005). Rapid growth in infancy and childhood and obesity in later life--a systematic review. Obes Rev. 6(2): 143-54.

Muktabhant B, Lumbiganon P, Ngamjarus C, Dowswell T (2012). Interventions for preventing excessive weight gain during pregnancy. Cochrane Database Syst Rev. 4:CD007145:1–121.

Myatt, L. (2006). Placental adaptive responses and fetal programming .J. Physiol. 572, 25–30

Nolan CJ, Damm P, Prentki M. (2011). Type 2 diabetes across generations: from pathophysiology to prevention and management. Lance. 378:169–181.

Oelsner KT, Guo Y, To SBC, Non AL, Barkin SL. (2017). Maternal BMI as a predictor of methylation of obesity-related genes in saliva samples from preschool-age hispanic children at-risk for obesity. BMC Genomics.18:57.

Oken E, Rifas-Shiman SL, Field AE, Frazier AL, Gillman MW. (2008). Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol. 112(5): 999 1006.

Ouni M, Schürmann A. (2020) Epigenetic contribution to obesity. Mamm Genome. 31(5-6):134-145. doi:10.1007/s00335-020-09835-3

Ozanne, SE. and Hales, CN. (2004). Fetal Growth and Adult Diseases. Semin. Perinatol. 28, 81–87.

Palou M, Priego T, Sánchez J, Palou A, Picó C (2010). Sexual dimorphism in the lasting effects of moderate caloric restriction during gestation on energy homeostasis in rats is related with fetal programming of insulin and leptin resistance. Nutr. Metab. (Lond). 2010;7:69.

Palou M, Torrens JM, Priego T, Sánchez J, Palou A, Picó C (2011). Moderate caloric restriction in lactating rats programs their offspring for a better response to HF diet feeding in a sex-dependent manner. J Nutr Biochem. 22(6):574–584.

Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, Langie SAS, Koppen G, Devlieger R, Godderis L. (2017). Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics. 9:16.

Perng W, Mora-Plazas M, Marín C, Rozek L, Baylin A, Villamor E. (2013). A Prospective study of LINE-1 DNA methylation and development of adiposity in school-age children. PLoS One. 8:e62587.

Petrus P, Bialesova L, Checa A, Kerr A, Naz S, Bäckdahl J, Gracia A, Toft S, Dahlman-Wright K, Hedén P, Dahlman I, Wheelock CE, Arner P, Mejhert N, Gao H, Rydén M. (2017). Adipocyte expression of SLC19A1 links DNA hypermethylation to adipose tissue inflammation and insulin resistance. J Clin Endocrinol Metab. 103:710–721.

Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K, Dudenhausen JW. (2009). Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 587(Pt 20): 4963-76.

Rhee JK, Lee JH, Yang HK, Kim TM, Yoon KH. (2017). DNA methylation profiles of blood cells are distinct between early-onset obese and control individuals. Genomics Inform. 15:28–37.

Rounge TB, Page CM, Lepistö M, Ellonen P, Andreassen BK, Weiderpass E. (2016). Genome-wide DNA methylation in saliva and body size of adolescent girls. Epigenomics. 8:1495–1505.

Rzehak P, Covic M, Saffery R, Reischl E, Wahl S, Grote V, Weber M, Xhonneux A, Langhendries JP, Ferre N, Closa-Monasterolo R, Escribano J, Verduci E, Riva E, Socha R, Gruszfeld D, Koletzko B. (2017). DNA methylation and body composition in preschool children: epigenome-wide-analysis in the European Childhood Obesity Project (ChOP)-study. Sci Rep. 7:14349.

Samblas M, Milagro FI, Martínez A. (2019). DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 14(5):421-444. doi:10.1080/15592294.2019.1595297

Selassie M, Sinha AC (2011). The epidemiology and aetiology of obesity: a global challenge. Best Pract Res Clin Anaesthesiol. 25:1–9.

Stepanow S, Reichwald K, Huse K, Gausmann U, Nebel A, Rosenstiel P, Wabitsch M, Fischer-Posovszky P, Platzer M. (2011). Allele specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One. 6(5): e17711.

Stover PJ, James WPT, Krook A, Garza C. (2018). Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J Intern Med. 284 (1):37–49.

Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman N, Shihab HA, Lyttleton O, McArdle W, Ring SM, Guant TR, Smith G Realton. (2015). Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 44:1288–1304.

Simopoulos AP. (2010). Nutrigenetics/nutrigenomics. Annu Rev Public Health. 31:53–68.

Taylor PD, Samuelsson AM, Poston L (2014). Maternal Obesity and the Developmental Programming of Hypertension: A Role for Leptin. Acta Physiologica. 210 (3): 508–23.

Tian JY, Cheng Q, Song XM, Li G, Jiang GX, Gu YY, Luo M. (2006). Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. Eur J Endocrinol. 155:601–607.

Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijimans BT. (2009). DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 18(21): 4046-53.

Van Dijk SJ, Peters TJ, Buckley M, Zhou J, Jones PA, Gibson RA, Makrides M, Muhlhausler BS, Molloy PL. (2018). DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes. 42:28–35.

Wardle J, Guthrie C, Sanderson S, Birch L, Plomin R. (2001). Food and activity preferences in children of lean and obese parents. Int J Obes Relat Metab Disord. 25:971–977.

Warner MJ, Ozanne SE (2010). Mechanisms involved in the developmental programming of adulthood disease. Biochem J. 427(3):333–347.

Weinstein LS, Xie T, Qasem A, Wang J, Chen M. (2010). The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond). 34(1): 6-17.

Wilczynska A, Bushell M. (2015). The complexity of miRNA-mediated repression. Cell Death Differ. 22:22–33.

Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C. (2011). Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 54(2): 360-7.

Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K, Kawamura M, Takemura M, Kakui K, Ogawa Y, Fujii S. (2005). Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. 1:371–378.

Zhao Y, Wang SF, Mu M, Sheng J. (2012). Birth weight and overweight/obesity in adults: a meta-analysis. Eur J Pediatr. 171:1737–1746.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Nigerian Journal of Physiological Sciences