Effect of taurine and caffeine on plasma c-reactive protein and calcium in Wistar rats
Abstract
Background: Caffeine is a component of several beverages such as coffee and tea. It has been shown to possess psychoactive properties because it increases alertness, energy and ability to concentrate at moderate doses. Taurine on the other hand, is an amino acid which has the capacity to promote neural development, osmoregulation and neuroprotection. There is paucity of information on the effect of the combined administration of taurine and caffeine on C-reactive protein (CRP) – a marker of inflammation and plasma calcium level in rats.
Aim: The present study was designed to investigate the effects of combined taurine and caffeine on the plasma level of CRP, Ca2+ as well as the effect of nifedipine on calcium level.
Method: Fifty four rats weighing 120-140 g were used for these studies. The animals were divided into nine groups consisting of six animals each. Group 1 was treated with 10 ml/kg of normal saline, Groups 2 and 3 were given 100 mg/kg and 200 mg/kg of taurine respectively, groups 4 and 5 received 7.5 mg/kg and 15 mg/kg of caffeine respectively while group 6 was administered taurine (200 mg/kg) and caffeine (15 mg/kg), groups 7 and 8 were treated with taurine (200 mg/kg) plus nifedipine (10 mg/kg) and taurine (200 mg/kg) plus furosemide (20 mg/kg) respectively while grup 9 was given taurine plu caffeine plus nifdipine plus furosemide. Treatment was done once daily for 21 days and blood was finally collected via cardiac puncture for the assay of CRP and calcium while the animals were under anaesthesia.
Results: The results showed that CRP was significantly decreased in five of the treated groups compared with the control with the exception of the group treated with taurine alone (Group 2), and that treated with combined taurine and caffeine (Group 6). The Ca2+ level of groups treated with caffeine (11.70 ± 0.29 mg/dL) and taurine with caffeine (11.64 ± 0.15 mg/dL) were significantly (p<0.05) increased compared with the control (10.70 ± 0.29 mg/dL). However, treatment with taurine and nifedipine (Group 7) led to significant (p<0.05) reduction in plasma Ca2+ level.
Conclusion: The results have shown that combined caffeine and taurine can boost plasma calcium level and decrease plasma CRP level. Moreover, taurine combined with nifedipine but not furosemide can act synergistically to lower both plasma Ca2+ and CRP levels, a result which may have implication for the treatment of hypertension.
Keywords: CRP, Caffeine, Calcium blocker, Taurine, Inflammation marker
Résumé
Contexte: La caféine est un composant de plusieurs boissons telles que le café et le thé. Elle a été montrée pour posséder des propriétés psycho-actives, car elle augmente la vigilance, l’énergie et la capacité de se concentrer à doses modérées. Le taurine d’autre part est un acide aminé qui a la capacité de promouvoir le développement neuronal, la régulation de l’osmose et la protection du neurone. Il ya manque d’information sur l’effet de l’administration combinée de la taurine et de la caféine sur la protéine C-réactive (PCR) - un marqueur d’inflammation et du niveau de calcium dans le plasma dans les rats.
Objectif: La présente étude a été conçue pour étudier les effets combinées de la taurine et de la caféine sur le niveau de PCR, Ca2 + ainsi que l’effet de la nifédipine sur le niveau de calcium du plasma.
Méthode: Quarante-huit rats pesant 120-140 g ont été utilisés pour ces études. Les animaux ont été divisés en huit groupes de six animaux. Le groupe 1 a été traitée avec 10 ml / kg de solution saline normale, les groupes 2 et 3 ont reçu 100 mg / kg et 200 mg / kg de taurine respectivement, les groupes 4 et 5 a reçu 7,5 mg / kg et 15 mg / kg de caféine respectivement, tandis que le groupe 6 a été administré la taurine (200 mg / kg) et la caféine (15 mg / kg), les groupes 7 et 8 ont été traités avec la taurine (200 mg / kg) plus la nifédipine (10 mg / kg), et la taurine (200 mg / kg) plus le furosémide (20 mg / kg), respectivement. Le traitement a été effectué une fois par jour pendant 21 jours et le sang a été recueilli enfin par ponction cardiaque pour le dosage de PCR et de calcium, tandis que les animaux étaient sous anesthésie.
Résultats: Les résultats ont montré que la PCR était significativement diminuée dans cinq des groupes traités par rapport au témoin, à l’exception du groupe traité seulement avec de la taurine (groupe 2), et celui traité avec la taurine et la caféine combiné (groupe 6). Le niveau de Ca2+ des groupes traités avec la caféine (11,70 ± 0,29 mg / dL) et taurine avec caféine (11,64 ± 0,15 mg / dL) étaient significativement (p <0,05) augmentés par rapport au groupe témoin (10,70 ± 0,29 mg / dL). Cependant, le traitement avec la taurine et la nifédipine (Group7) a conduit à une réduction significative (p <0,05) dans le niveau Ca2+ du plasma.
Conclusion: Les résultats ont montré que la caféine et la taurine combinée peut augmenter le niveau de calcium dans le plasma et de diminuer le niveau de PCR plasmatique. En outre, la taurine combinée avec la nifédipine, mais pas avec le furosémide peut agir de manière synergique pour diminuer, en même temps, les niveaux de Ca2+ et de PCR plasmatique, un résultat qui peut avoir d’incidence sur le traitement de l’hypertension.
Mots-clés: PCR, Caféine, calciques, taurine, marqueur d’inflammation
Correspondence: Mr. A.L. Oyewole, Neuroscience and Inflammation Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria. E-mail: oyewoleal@unilorin.edu.ng.
References
Yang A, Abraham AP and Harriet de W. Genetics of caffeine consumption and responses to caffeine Psychopharmacology 2010; 211:245–257
Haskell CF, Kennedy DO, Wesnes KA and Scholey AB. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psycho- pharmacology (Berl) 2005; 179:813–825
Lieberman HR, Tharion WJ, Shukitt-Hale B, et al. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea–Air–Land. Psycho- pharmacology (Berl) 2002; 164:250–261
Daly JW and Fredholm BB. Caffeine—an atypical drug of depende0nce. Drug Alcohol Depend 1998; 51:199–206
Fisone A, Borgkvist A and Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 2004;61:857–872.
Chen X and Whitford GM. Effects of caffeine on fluoride, calcium and phosphorus metabolism and calcified tissues in the rat. Archives of Oral Biology 1999; 44:33-39
Glajchen N, Ismail F, Epstein S, et al. The effect of chronic caffeine administration on plasma markers of bone mineral metabolism and bone histomorphometry in the rat. Calcif Tissue Int. 1988; 43(5):277-280.
Hasling C, Sondergaard K, Charles P and Mosekilde L. Calcium metabolism in post- menopausal osteoporotic women is determined by dietary calcium and coffee intake. Journal of Nutrition. 1992, 122(5): 1119-1126.
Johnson S. The multifaceted and widespread pathology of magnesium deficiency. Medical Hypotheses 2001; 56(2):163-170.
Ribeiro-Alves MA, Trugo LC and Donangelo CM. Use of oral contraceptives blunts the calciuric effect of caffeine in young adult women. Journal of Nutrition. 2003; 133: 393- 398.
Raaska K, Raitasuo V, Laitila J and Neuvonen PJ. Effect of Caffeine-Containing versus Decaffeinated Coffee on Plasma Clozapine Concentrations in Hospitalised Patients. Basic & Clinical Pharmacology & Toxicology 2004; 94:13–18.
Ganapathi MK, Mackiewicz A, Samols D et al. Induction of C-reactive protein by cytokines in human hepatoma cell lines is potentiated by caffeine Biochem. J. 1990; 269, 41-46
Simon B and Wen S. Reciprocal regulation between taurine and glutamate response via Ca2+- dependent pathways in retinal third-order neurons. Journal of Biomedical Science 2010; 17(Suppl 1):S5
Alexandrov AA and Batuev AS. Intracellular studies of GABA and taurine action of the neurons of the cat sensorimotor cortex. J Neurosci Res 1979; 4:59-64.
Okamoto K and Saki Y. Inhibitory actions of taurocyamine, hypotaurine, homotaurine, taurine and GABA on spike discharges of Purkinje cells, and localization of sensitive sites, in guinea pig cerebellar slices. Brain Res. 1981; 206:371-386.
Iwata H, Nakayama K, Matsuda T and Baba A: Effect of taurine on a benzodiazepine-GABA-chloride ionophore receptor complex in rat brain membranes. Neurochem Res. 1984; 9:535-544.
Sturman JA: Taurine in development. J Nutr 1988; 118:1169-1176.
Pow DV, Sullivan R, Reye P and Hermanussen S: Localization of taurine transporters, taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain. Glia. 2002; 37:153- 168.
Kong WX, Chen SW, Li YL, et al. Effects of taurine on rat behaviours in three anxiety models. Pharmacol Biochem Behav 2006; 83:271-276.
Xu Y-J, Arneja AS, Tappia PS and Dhalla NS. The potential health benefits of taurine in cardiovascular disease. Exp Clin Cardiol 2008; Vol 13 No 2.
Guizouarn H, Motais R, Garcia-Romeu and Borgese F. Cell volume regulation: The role of taurine loss in maintaining membrane potential and cell pH. J Physiol 2000; 523:147-154.
Parcell S. Sulfur in human nutrition and applications in medicine. Altern Med Rev 2002; 7:22-44.
Gupta RC, Win T and Bittner S. Taurine analogues; a new class of therapeutics: Retrospect and prospects. Curr Med Chem 2005; 12:2021-2039.
Rosa FT, Freitas EC, Deminice R, et al. Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014; 53(3):823-830.
De Smedt H, Verkhratsky A and Muallem S. Ca(2 + ) signaling mechanisms of cell survival and cell death: an introduction. Cell Calcium 2011; 50:207–210.
Munaron L, Antoniotti S and Lovisolo D. Intracellular calcium signals and control of cell proliferation: how many mechanisms? J Cell Mol Med 2004; 8:161–168.
Orrenius S, Zhivotovsky B and Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4:552–565.
Yamakage M and Namiki A. Calcium channels–basic aspects of their structure, function and gene encoding; anaesthetic action on the channels–a review. Canadian journal of anaesthesia = Journal canadien d’anesthesie 2002; 49: 151–164.
Nishikitani M, Yasuoka Y, Kawada H and Kawahara K. L-type Ca2+ channels in the enteric nervous system mediate oscillatory Cl- secretion in guinea pig colon. The Tohoku journal of experimental medicine 2007; 211: 151–160.
Engbers JD, Anderson D, Tadayonnejad R, et al. Distinct roles for I(T) and I(H) in controlling the frequency and timing of rebound spike responses. The Journal of physiology 2011; 589: 5391–5413.
van Mil HG, Geukes Foppen RJ and Siegenbeek van Heukelom J. The influence of bumetanide on the membrane potential of mouse skeletal muscle cells in isotonic and hypertonic media. Br J Pharmacol 1997;120:39-44.
Spafford JD, Dunn T, Smit AB, Syed NI and Zamponi GW. In vitro characterization of L-type calcium channels and their contribution to firing behaviour in invertebrate respiratory neurons. Journal of neurophysiology 2006; 95: 42–52.
Volanakis JE. Human C-reactive protein: expression, structure, and function. Mol Immunol 2001;38:189 – 197.
Ablij HC and Meinders AE. C-reactive protein: history and revival. Eur J Intern Med 2002; 13: 412 – 422.
Morley JJ and Kushner I. Plasma C-reactive protein levels in disease. Ann NY Acad Sci 1982; 389: 406 – 418.
Young B, Gleeson M and Cripps AW. C-reactive protein: a critical review. Pathology 1991; 23: 118 – 24.
Ridker PM and Rifai N. C-reactive protein and cardiovascular disease. St-Laurent, Canada: MediEdition Inc., 2006:393.
Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359: 2195 – 2207.
Pena JM, MacFadyen J, Glynn RJ and Ridker PM. High-sensitivity C-reactive protein, statin therapy, and risks of atrial fibrillation: an exploratory analysis of the JUPITER trail. Eur Heart J 2012;33:531 – 537.
Gouirand AM and Matuszewich L. The effects of chronic unpredictable stress on male rats in the water maze. Physiol Behav 2005; 86: 21–31.
Heaney RP and Recker RR. Effects of nitrogen,phosphor us, and caffeine on calcium balance in women. Journal of Laboratory and Clinical Medicine 1982; 99:46–55.
Yeh JK and Aloia JF. Differential Effect of Caffeine Administration on Calcium and Vitamin D Metabolism in Young and Adult Rats. Journal of Bone And Mineral Research Volume 1, Number 3, 1986.
Whiting SJ, Whitney HL. Effect of dietary caff?eine and theophylline on urinary calcium excretion in the adult rat. J. Nutr. 1987; 117:1224-1228.
Heaney RP. Effects of caffeine on bone and the calcium economy. Food and Chemical Toxicology 2002; 40:1263–1270.
Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med. 1999; 340:115–126 46. 46. Libby P., Ridker, PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105, 1135–1143
Christensen AW, Rifbjerg-Madsen S, Christensen R, et al. Temporal summation of pain and ultrasound Doppler activity as predictors of treatment response in patients with rheumatoid arthritis: protocol for the Frederiksberg hospitals Rheumatoid Arthritis, pain assessment and Medical Evaluation (FRAME-cohort) study. BMJ Open 2014; 4:e004313.
Hernandez-Romero MC, Delgado-Corteìs MJ, Sarmiento M, et al. Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. NeuroToxicology 2012; 33:347–360.
Ridker PM. High-sensitivity C-reactive protein: Potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103: 1813–1818.
Kirichok Y, Krapivinsky G and Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427:360–364.
Yano S, Brown EM and Chattopadhyay N. Calcium-sensing receptor in the brain. Cell Calcium 2004; 35:257–264.
Hagenston AM and Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3(11):a004564.
Bertel O, Conen D, Radu EW, et al. Nifedipine in hypertensive emergencies British Medical Journal Volume 286 1 January 1983