Anthropometric indices: How they compare in screening of cardio-metabolic risks in a Nigerian sub-population.
Abstract
Background: The current anthropometric indices used for diagnosis of cardio-metabolic syndrome (CMS) in sub-Saharan Africa are those widely validated in the western world. We hereby aim to compare the sensitivity and specificity of these tools in identifying risk factors for CMS.
Method: The study assessed body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR). Statistical analyses were performed to determine the sensitivity and specificity of WHtR in comparison with WC cut-off points recommended by the International Diabetes Federation (IDF) and the Third Adult Treatment Panel (ATPIII) as well as BMI cutoffs prescribed by the World Health Organisation (WHO).
Result: WHtR had the highest area under the receiver operating characteristic (ROC) curve in screening CMS. WHtR >0.5 also showed highest sensitivity in both genders in identifying CMS and clusters of >2 CMS risk factors, but with lowest specificity and positive likelihood ratio (LR+). ATPIII WC cut-off revealed lowest sensitivity and highest specificity in screening CMS and >2 CMS risk factors in males (p<0.0001). IDF WC threshold had the more stable sensitivity and specificity in males (p<0.0001) but not in females.
Conclusion: WHtR>0.5 is more sensitive than WC and BMI recommended values in screening for CMS, but with the least positive likelihood ratio. However, more studies in other nations of sub-Saharan Africa are needed to assure evaluation of different cut points that will yield optimal specificity and sensitivity. This will help curb the problem of over-diagnosis of CMS risk factors and increase better health outcome of the population.
Keywords: Anthropometric indices, cardio-metabolic syndrome, Nigeria
Résumé
Contexte: Les indices anthropométriques actuels utilisés pour le diagnostic du syndrome cardio-métabolique (SCM) en Afrique sub-saharienne sont celles qui sont largement validé dans le monde occidental. Nous voulons par ainsi comparer la sensibilité et la spécificité de ces outils pour identifier les facteurs risque pour leSCM.
Méthode: L’étude a évalué l’indice de masse corporelle (IMC), lacirconférence de la taille (CT) et le rapport taille-hauteur (RTH). Les analyses statistiques ont été réalisées pour déterminer la sensibilité et la spécificité duRTH en comparaison avec lesseuilsde laCT recommandé par la Fédération Internationale du Diabète (FID) et le TroisièmePanel de Traitementd’Adulte (PTAIII), ainsi que lesseuils de l’IMC prescrits par L’Organisation Mondiale de la Santé (OMS).
Résultat: RTH avait la plus forte aire sous la courbe caractéristique opérantdu receveur (COR) dans le dépistage duSCM. RTHe”0.5 a également montré une sensibilité plus élevée dans les deux sexes dans l’identification des SCM et des clusters e”2 desfacteurs risquedeSCM, mais avec la plus faible spécificité et rapport de probabilité positif (LR +). Le seuilde la CTPTAIII a révélé la plus faible sensibilité etla plus élevéespécificité dans le dépistage duSCM et e”2 facteurs risquedeSCM chez les hommes (p <0,0001). Le seuil de laCTFID avait laplus stable sensibilité et spécificité chez les hommes (p <0,0001), mais pas chez les femmes.
Conclusion: RTH> 0,5 est plus sensible que les valeurs de la CT et de l’IMC recommandé dans le dépistage duSCM, mais avec lemoins positif rapport de probabilité. Cependant, plus d’études dans d’autres pays d’Afrique sub-saharienne sont nécessaires pour assurer l’évaluation des différents seuils qui donneront spécificité et sensibilitéoptimale. Cela aidera à modérer le problème de sur-diagnostic des facteurs risque duSCM et d’augmenter meilleurs résultats pour la santé de la population.
Mots-clés: Indices anthropométriques, syndrome cardio-métabolique, Nigeria
Correspondence: Mr. Victor M Oguoma, School of Psychological and Clinical Sciences, Charles Darwin University, Darwin , Northern Territory, 0909, Australia. E-mail: victormaduabuchi.oguoma@edu.edu.au; oguomavm@yahoo.com
References
Okafor CI. The metabolic syndrome in Africa: Current trends. Indian J Endocrinol Metab. 2012;16:56-66.
WHO. Risk factors: prevalence of high blood pressure. World Health Statistics. Geneva: World Health Organisation; 2012.
Bosu WK. The prevalence, awareness, and control of hypertension among workers in West Africa: a systematic review. Glob Health Action. 2015;8:26227.
Gebreselassie KZ and Padyab M. Epidemiology of Hypertension Stages in Two Countries in Sub-Sahara Africa: Factors Associated with Hypertension Stages. International journal of hypertension. 2015;2015:959256.
Oguoma VM, Nwose EU and Richards RS. Prevalence of cardio-metabolic syndrome in Nigeria: a systematic review. Public Health. 2015;129:413-423.
Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766-781.
International Diabetes Federation. New IDF worldwide definition of the metabolic syndrome. Press Conference, 1st International Congress on “Pre-diabetes” and the Metabolic Syndrome, Berlin, Germany, April 14, 20052005.
NCEP. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation. 2002;106:3143.
Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112:2735-2752.
Ashwell M, Gunn P and Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obesity Reviews. 2012;13:275-286.
Lee CMY, Huxley RR, Wildman RP and Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. Journal of clinical epidemiology. 2008;61:646-653.
Browning LM, Hsieh SD and Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0• 5 could be a suitable global boundary value. Nutrition research reviews. 2010;23:247-269.
Ware LJ, Rennie KL, Kruger HS, et al. Evaluation of waist-to-height ratio to predict 5 year cardiometabolic risk in sub-Saharan African adults. Nutrition, metabolism, and cardiovascular diseases: NMCD. 2014;24:900-907.
Crowther NJ and Norris SA. The current waist circumference cut point used for the diagnosis of metabolic syndrome in sub-Saharan African women is not appropriate. PloS one. 2012;7:e48883.
Motala AA, Esterhuizen T, Pirie FJ and Omar MA. The prevalence of metabolic syndrome and determination of the optimal waist circumference cutoff points in a rural South african community. Diabetes care. 2011;34:1032-1037.
Mbanya VN, Kengne AP, Mbanya JC and Akhtar H. Body mass index, waist circumference, hip circumference, waist-hip-ratio and waist-height-ratio: which is the better discriminator of prevalent screen-detected diabetes in a Cameroonian population? Diabetes research and clinical practice. 2015;108:23-30.
Oguoma VM, Nwose EU, Skinner TC, et al. Prevalence of cardiovascular disease risk factors among a Nigerian adult population: relationship with income level and accessibility to CVD risks screening. BMC public health. 2015;15:397.
World Health Organisation. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Report of a WHO consultation WHO/NCD/NCS/992: World Health Organisation: Geneva; 1999.
Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640-5.
Peat J and Barton B. Medical statistics: A guide to data analysis and critical appraisal: John Wiley & Sons; 2008.
Parikh R, Mathai A, Parikh S, et al. Understanding and using sensitivity, specificity and predictive values. Indian Journal of Ophthalmology. 2008;56:45-50.
Ogunmola OJ, Olaifa AO, Oladapo OO and Babatunde OA. Prevalence of cardiovascular risk factors among adults without obvious cardiovascular disease in a rural community in Ekiti State, Southwest Nigeria. BMC cardiovascular disorders. 2013;13:89.
Adegoke OA, Adedoyin RA, Balogun MO, et al. Prevalence of metabolic syndrome in a rural community in Nigeria. Metabolic syndrome and related disorders. 2010;8:59-62.
Meseri R, Ucku R and Unal B. Waist:height ratio: a superior index in estimating cardiovascular risks in Turkish adults. Public Health Nutrition. 2014;17:2246-2252.
Hsieh SD, Yoshinaga H and Muto T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. Int J Obes Relat Metab Disord. 2003;27:610-616.
Soto González A, Bellido D, Buño MM, et al. Predictors of the metabolic syndrome and correlation with computed axial tomography. Nutrition. 2007;23:36-45.
Ashwell M and Shiun Dong H. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. International Journal of Food Sciences & Nutrition. 2005;56:303-307.
Arthur FK, Adu-Frimpong M, Osei-Yeboah J, Mensah FO and Owusu L. Prediction of metabolic syndrome among postmenopausal Ghanaian women using obesity and atherogenic markers. Lipids Health Dis. 2012;11:10.1186.
Evans J, Micklesfield L, Jennings C, et al. Diagnostic ability of obesity measures to identify metabolic risk factors in South African women. Metab Syndr Relat Disord. 2011;9:353-60.