Chebulinic acid potentiates antidepressant-like properties through monoaminergic systems and adult hippocampal neurogenesis in laboratory mice


Background: Chebulinic acid, an ellagitannin, present in the fruits of Terminalia chebula has been reported to show antioxidant, anti-nociceptive and antidepressant properties. Pre-clinical and clinical studies have suggested the involvement of monoamines, particularly the serotonergic and noradrenergic systems in the molecular mechanism of depression. Research has also suggested that the mode of action of antidepressants may be via hippocampal neurogenesis. There is no report elucidating how chebulinic acid potentiates its antidepressant properties. This study was therefore carried out to investigate its probable antidepressant mechanisms of action.

Methods: Involvement of serotonergic, cholinergic, dopaminergic and adrenergic systems were studied using Forced Swimming Test, Tail Suspension Test (as models of depression) and Open Field Test which measures ambulatory behaviours. Antagonists Prazosin, an alpha1-adrenergic receptor blocker (62.5 μg/kg, i.p.), metergoline, a 5HT2 receptor blocker (4 mg/kg, i.p.), atropine, a -muscarinic cholinergic receptor blocker (1 mg/kg i.p.) and sulpiride, a dopaminergic3 receptor blocker (50 mg/kg i.p) were administered before chebulinic acid (20 mg/kg). Animals were also treated with chebulinic acid for 7, 21 and 28 days to see the effect of continuous administration, after which neuronal cell proliferation in the hippocampus was determined by Immunohistochemistry using Ki-67 antibody.

Results: Results showed that mobility was reversed in animals pre-treated with metergoline significantly (p < 0.05), but not sulpiride, prazosin and atropine, showing a possible involvement of serotoninergic system. There is a marked increase in the number of proliferating neuronal cells as observed after chronic treatment with chebulinic acid.

Conclusion: Chebulinic acid probably exhibits its antidepressant-like activity via serotonergic systems. The presence of proliferating cells in the chronic-treated groups indicates antidepressant-like activities, which is consistent with the time course for the therapeutic action of antidepressants. Chebulinic acid may serve as a template in the development of an alternative antidepressant drug.

Keywords: Terminalia chebula, hippocampus, antidepressant-like activities, serotonergic systems.

Contexte: L’acide chebulinique, une ellagitannine, présent dans les fruits de Terminalia chebula, a révélé des propriétés neurologiques anti oxydantes, anti-nociceptif et antidépresseur. Des études précliniques et cliniques ont suggéré l’implication de monoamines, en particulier les systèmes séroto-nergiques et noradrénergiques dans le mécanisme moléculaire de la dépression. La recherche a également suggéré que le mode d’action des antidépresseurs peut se faire à travers la neurogenèse de l’hippocampe. Il n’existe aucun rapport expliquant comment l’acide chebulinique potentialise ses propriétés antidépresseur. Cette étude a donc été réalisée pour étudier son (ses) mécanisme (s) d’action antidépresseur (s) probable (s).

Méthodes: l’implication des systèmes sérotonergiques, cholinergiques, dopaminergiques et adrénergiques a été étudiée en utilisant le test de natation forcée, le test de suspension de la queue (en tant que modèles de dépression) et le test de terrain ouvert qui mesure les comportements ambulatoires. Les antagonistes Prazosin, un bloqueur des récepteurs alpha1-adrénergiques (62,5 μg / kg, ip), la métérergine, un bloqueur de récepteur 5HT2 (4 mg / kg, ip), l’atropine, un inhibiteur de récepteur cholinergique a -muscarinique (1 mg / kg ip) et le sulpiride, un bloqueur de récepteur D2 et D3 (50 mg / kg ip) a été administré avant l’acide chebulinique (20 mg / kg). Les animaux ont également été traités avec de l’acide chebulinique pendant 7, 21 et 28 jours pour voir l’effet de l’administration continue, après quoi la prolifération des cellules neuronales dans l’hippocampe a été déterminée par l’immunohistochimie en utilisant l’anticorps Ki-67.

Résultats: Les résultats ont montré que la mobilité a été inversée chez les animaux prétraités avec de la méthergoline de manière significative (p  0,05), mais pas le sulpiride, la prazosine et l’atropine, ce qui montre une implication possible du système sérotoninergique. Il y a une augmentation marquée du nombre de cellules neuronales proliférantes observées après un traitement chronique avec de l’acide chebulinique.

Conclusion: l’acide chebulinique présente probablement son fonctionnement antidépresseur par des systèmes sérotonergiques. La présence de cellules proliférantes dans les groupes traités par voie chronique indique des activités semblables aux antidépresseurs, ce qui correspond au cours de l’action thérapeutique des antidépresseurs. L’acide chebulinique peut servir de modèle dans le développement d’un autre médicament antidépresseur.

Mots-clés: Terminalia chebula, hippocampe, activités antidépresseurs, systèmes sérotonergiques.

Correspondence: Dr. S.A. Onasanwo, Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria. Email:,



World Health Organisation, sixty-fifth world health assembly. 2012

Buller R and Legrand V. Novel treatment for anxiety and depression hurdles in bringing them to the market. Drug discovery today 2001; 6: 1220-1236

Berton O and Nestler EJ. New approaches to antidepressant drug discovery beyond monoamines: Nat Rev Neurosci. 2006; 7:137–151.

Holtzheimer PE and Nemeroff CB. Advances in the treatment of depression. J NeuroRx. 2006; 3: 42–56.

Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62:593-602.

Nestler EJ and Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006; 59: 1151–1159.

World Health Organisation. Traditional medicine in the African region. An initial situation analysis, 1998 – 1999. Harare, WHO regional office for Africa. 1999.

RTI International University of North Carolina Evidence-based Practice Centre (2007). Comparative effectiveness of second-generation antidepressants in the pharmacologic treatment of adult depression.

Nemeroff CB and Owens MJ. Treatment of mood disorders. Nature Neuroscience; Supplement 2002; 5: 1068–1070.

Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ. and Monteggia LM. Neurobiology of depression. Neuron 2006; 34: 13-25.

Shildkraunt JJ. The catecholamine hypothesis of affective disorders; a review of supporting evidence. American Journal of Psychiatry 1965; 122: 509-522.

Elhwuegi AS. Central monoamines and their role in major depression. Prog neuro-psychopharmacol Biol Psychiatry 2004; 28: 435-451.

Papakostas GI. Dopaminergic-based pharmacotherapies for depression Eur Neuropsychopharmacol. 2006; 16: 391–402.

D’Aquila PS, Collu M, Gessa GL and Serra G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol. 2000; 405: 365–373.

Malberg JE, Eisch AJ, Nestler EJ and Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience. 2000; 20, 9104–9110

Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965; 124: 319–335.

Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

Zhang ZJ. Theraupeutic effects of herbal extracts of constituents in animal models of psychiatric disorders. Life Science 2004; 75: 1659 – 1699

Miller, N. E. “The Value of Behavioral Research on Animals.” In American Psychologist, Vol. 40 (1985), pp. 423–440.

Sato Y, Oketani H, Sinyouchi K, et al. Extraction and purification of effective antimicrobial constituents of Terminalia chebula. 1997.

Cheng HW, Lin TC, Yu KH, Yang CM, and Lin CC. Antioxidant and free radical scavenging activities of Terminalia chebula. Biol Pharm Bull. 2013; 26(9): 1331-1335.

Kaur S and Jaggi RK. Antinociceptive activity of chronic administration of different extracts of Terminalia bellerica Roxb. and Terminalia chebula Retz. Fruits. Indian J Exp Biol. 2010; 48(9): 925-30.

Pampattiwar SP, Adwani NV, Bulusu S and Paramkusha RM. Pharmacological study of the anti-inflammatory action of Haritaki preparations on wistar rats in haemorrhoids (piles). Global J. Res. Med. Plants and Indigen. Med. 2013; 2(3): 178 – 182.

Ta-Chen L, Feng-Lin H and Juel-Tang C. Antihypertensive activity of Corilagin and Chebulinic acid, tannins from Lumnitera recemosa. J. Nat. Prod.1993; 56(4): 629 – 632.

Mishra V, Agrawal M, Onasanwo SA, et al. Anti-secretory and cyto-protective effects of chebulinic acid isolated from the fruits of Terminalia chebula on gastric ulcers. Phytomedicine. 2013; 20: 506-511.

Onasanwo SA, Faborode SO, Agrawal M, et al. Antidepressant and Anxiolytic Potentials of Chebulinic Acid in Laboratory Rodent. Ann Depress Anxiety. 2014;1(7): 5.

World Medical Organization. Declaration of Helsinki. British Medical Journal (7 December) 1996; 313(7070):1448-1449.

Pfundstein B, Samy K, Desouky E, et al. Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): characterization quantitation and determination of antioxidant capacities. Phytochemistry. 2010; 71: 1132–1148.

Porsolt RD, Bertin A and Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977; 229: 327-336.

Steru L, Chermat R, Thierry B and Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985; 85: 367-370

Ikram H, Samad N and Haleem DJ. Neurochemical and behavioral effects of m-CPP in a rat model of tardive dyskinesia. Pak. J. Pharm. Sci. 2007; 20(3): 188-195

Ikram H and Haleem DJ. Haloperidol-induced Tardive Dyskinesia: Role of 5HT2C Receptors. Pak. J. Sci. Ind. Res. 2010; 53(3): 136-145

Mirza B, Ikram H, Bilgrami S, Haleem DJ and Haleem MA. Neurochemical and behavioral effects of green tea (camellia sinensis): A model study. Pak. J. Pharm. Sci. 2013; 26(3): 511-516.

Cryan JF, Markou A and Lucki I. Review Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002; 23(5):238- 245.

Cryan JF, Mombereau C and Vassout A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005; 29: 571-625a

Cryan JF, Valentino RJ and Lucki I. Review Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005; 29(4-5):547-569b

Bourin M, Colombel M.C, Maligne and Bradwejin J. Clonidine as sensitizing agent in the forced swimming test for revealing anti-depressant activity. Journal of psychiatry 1991.

Willner P. The validity of animal models for depression. Psychopharmacology 1984; 83(1): 1-16.

Duman R, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 199; 46:1181–1191.

Wong ML and Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci. 2001; 2(5):343-351.

Kreiss DS and Lucki I. Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp. 1995.

Frazer A. Norepinephrine involvement in antidepressant action. J Clin Psychiatry from Terminalia chebula and flavanol glycoside gallates from Euphoria pekinensis. Planta. Med.2000; 68(5): 457 – 459.

Nutt DJ. The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry 2006; 67 (Suppl. 6): 3–8

Kitada Y, Miyauchi T, Kanazawa Y, Nakamichi H and Satoh S. Involvement of α- and β1- adrenergic mechanisms in the immobility-reducing action of desipramine in the Alternative Medicine Review 1983; 5(1): 25 – 28

Danysz W, Kostowski W, Kozak W and Hauptmann M. On the role of noradrenergic neurotransmission in the action of desipramine and amitriptylline in animal models of depression. Pol J Pharmacol Pharm. 1986; 38: 285–298.

Masuda Y, Ohnuma S and Sugiyama T. α2-adrenoceptor activity induces the antidepressant like Corilagin and Chebulinic acid, tannins from Lumnitera recemosa. J. Nat. Prod.2001.

Denenberg, V. H. Open field behavior in the rat—what does it mean? Ann. N. Y. Acad. Sci. 1969; 159: 852-859.

Walsh RN and Cummins RA. The open field test—a critical review. Psychol. Bull. 1976; 83: 482-504.

Royce J R. On the construct validity of open field measures.Psychol. Bull. 1977; 84: 1098—1106.

Blanchard DC, Griebel G and Blanchard RJ. Mouse defensive behaviours Pharmacological and behavioural assays for anxiety and panic. Neuroscience and Biobehavioural Reviews 2001; 25: 205-218.

Magarinos AM, Deslandes A and McEwen BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol. 1999; 371:113-122.

Hayley S, Poulter MO, Merali Z and Anisman H. The pathogenesis of clinical depression: stressor- and cytokine - induced alterations of neuroplasticity. Neuroscience 2005; 135(3): 659-678.

Manji HK, Drevets WC and Charney DS. The cellular neurobiology of depression. Nat Med. 2001; 7:541-547.