Exogenous administration of adenosine enhanced glucose uptake in canine hind limb at rest and during contraction

Authors

  • Dr. H.M. Salahdeen

Abstract

Background: Glucose metabolism increases during contraction of skeletal muscle and can be influenced by the endogenous adenosine. However, the role of exogenous adenosine in regulating glucose uptake at rest or during contraction has not been elucidated in dogs. We studied the effects of exogenous adenosine on glucose uptake in canine hind limb at rest and during contraction.

Methods: The study was carried out using thirty (30) fasted and anaesthetized male dogs divided into six groups (5dogs/group). Groups I (control) and II received normal saline (0.1ml/kg) at rest and during contraction of hind limb respectively. Group III received adenosine (0.1, 0.5 and 1mg/kg) at rest. Group IV were treated with adenosine (1mg/kg) during contraction. Groups V and IV were pretreated with caffeine (6mg/kg) and infused with adenosine (1mg/kg) for thirty minutes at rest and during contraction of the hind limb respectively. Blood glucose was measured by glucose oxidase method. Arterio-venous (A-V) glucose and venous blood flow (VBF) were measured; hind limb glucose uptake (HGU) was calculated as the product of A-V glucose and VBF.

Results: The results showed that exogenously administered adenosine significantly (P<0.05) increased AV glucose, VBF and HGU in a dose dependent manner at rest. During contraction adenosine increased AV glucose significantly from14.2±0.5mg/dl to 45.4±1.8ml/min. VBF also significantly increased from 4.7±0.6ml/min to 16.3±1.2 and HGU from 34.8±2.4 to 450.8±8.2mg//min. Pretreatment with caffeine significantly reduced adenosine-induced hyperglycemia at rest and during contraction.

Conclusion: Exogenous adenosine at rest and during contraction increases the skeletal muscle glucose uptake and the increase appears to be mediated by inhibition of adenosine receptors.

Keywords: Adenosine, Caffeine. Dog, glucose uptake, hind limb

Résumé - 3710
Contexte: Le métabolisme du glucose augmente pendant la contraction du muscle squelettique et peut être influencé par l’adénosine endogène. Cependant, le rôle de l’adénosine exogène dans la régulation de l’absorption de glucose au repos ou pendant la contraction n’a pas été élucidée chez les chiens. Nous avons étudié les effets de l’adénosine exogène sur l’absorption de glucose dans le membre postérieur canin au repos et pendant la contraction.

Méthodes: L’étude a été menée à l’aide de trente (30) chiens mâles en jeûnés et anesthésiés répartis en six groupes (5 chiens / groupe). Les groupes I (témoin) et II ont reçu une solution saline normale (0,1 ml / kg) au repos et pendant la contraction du membre postérieur respectivement. Le groupe III a reçu de l’adénosine (0,1 ; 0,5 et 1 mg / kg) au repos. Le groupe IV a été traité avec de l’adénosine (1 mg / kg) pendant la contraction. Les groupes V et IV ont été prétraités avec de la caféine (6 mg / kg) et infusés avec de l’adénosine (1 mg / kg) pendant 30 minutes au repos et pendant la contraction du membre postérieur respectivement. La glycémie a été mesurée par la méthode de l’oxydase du glucose. Le glucose sanguin artério-veineux (A-V) et le flux sanguin veineux (VBF) ont été mesurés; l’absorption de glucose des membres postérieurs (HGU) a été calculée comme le produit du glucose A-V et du VBF.

Résultats: Les résultats ont montré que l’adénosine administrée exogène de manière significative (P <0,05) a augmenté le glucose A-V, VBF et HGU de manière dépendante de la dose au repos. Pendant la contraction, l’adénosine a augmenté le glucose A-V significativement de 14,2 ± 0,5 mg / dl à 45,4 ± 1,8 ml / min. VBF a également augmentée de 4,7 ± 0,6 ml / min à 16,3 ± 1,2 et HGU de 34,8 ± 2,4 à 450,8 ± 8,2 mg / min. Le prétraitement avec la caféine a considérablement réduit l’hyperglycémie induite par l’adénosine au repos et pendant la contraction.

Conclusion: L’adénosine exogène au repos et pendant la contraction augmente l’absorption du glucose dans le muscle squelettique et l’augmentation semble être par la médiation de l’inhibition des récepteurs de l’adénosine.

Mots-clés: Adénosine, Caféine. Chien, absorption de glucose, membre postérieur

Correspondence: Dr. H.M. Salahdeen, Department of Physiology, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria. Email: hmsalahdeen@gmail.com; hussein.salahdeen@lasucom.edu.ng

References

Zurlo F., Larson K., Bogardus C., and Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin. Invest 1990; 86: 1423–1427.

DeFronzo RA, Jacot E., Jequier E., et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981; 30: 1000–1007.

Richter EA. Glucose utilization. In: Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: 1996, Sect. 12, Chapt. 20, p. 913–951

Rose AJ. and Richter E.A. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology 2005; 20: 260-270.

Lee AD, Hansen PA, and Holloszy JO. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett 1995; 361: 51–54.

Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance J Clin Invest 2000; 106(2):165-9.

Thong FSL, Graham TE Caffeine-induced impairment of glucose tolerance is abolished by â-adrenergic receptor blockade in humans J Appl Physiol 2002; 92: 2347–2352.

Zimmermann H “Extracellular metabolism of ATP and other nucleotides,” Naunyn-Schmiedeberg’s Archives of Pharmacol 2000; 362: 299–309.

Latini S and F Pedata Adenosine in the central nervous system: release mechanisms and extracellular concentrations J Neurochem 2001; 79: 463-484.

Tucker AL, Linden J. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res 1993; 27(1): 62–67

Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53: 527-552.

Hellsten Y. The effect of muscle contraction on the regulation of adenosine formation in rat skeletal muscle cells. J Physiol 1999; 518: 761-768.

Akiba TK, Yaguchi, K Tsutsumi, T et al. Inhibitory mechanism of caffeine on insulin-stimulated glucose uptake in adipose cells. Biochem Pharmacol 2004; 68(10): 1929-1937.

Martin SE amd Bockman. EL Adenosine regulates blood flow and glucose uptake in adipose tissue of dogs Am J Physiol 1986; 250 (6) H1127-H1135

Joost HG, Weber TM, Cushman SW and Simpson IA. Insulin-stimulated glucose transport in rat adipose cells. Modulation of transporter intrinsic activity by isoproterenol and adenosine J Biol Chem 1986; 261: 10033 – 10036.

Mainwaring R, Lasley R, Rubio R, et al. Adenosine stimulates glucose uptake in the isolated rat heart. Surg 1988; 103:445-449.

Angello DA, Beme RM and Coddington NM. Adenosine and insulin mediate glucose uptake in normoxic rat hearts by different mechanisms. Am J Physiol 1993; 265:H880-H885.

Han DH, Hansen PA, Nolte LA and Holloszy JO. Removal of adenosine decreases the responsiveness of muscle glucose transport to insulin and contraction. Diabetes 1998; 47: 1671-1675.

Cheng B, Essackjee HC and Ballard HJ. Evidence for control of adenosine metabolism in rat oxidative skeletal muscle by changes in pH. J Physiol 2000; 522:467–477.

Thong FS and Graham TE. Caffeine-induced impairment of glucose tolerance is abolished by beta-adrenergic receptor blockade in humans. J Appl Physiol 2002; 92:2347–2352.

Epsinal J, Challiss J and Newsholme EA. Effect of adenosine deaminase and an adenosine analogue on insulin sensitivity in soleus muscle of the rat. FEBS Lett 1983; 158:103-106.

Budohoski L, Challiss R, McManus B and Newsholme E. Effects of analogues of adenosine and methyl xanthines on insulin sensitivity in soleus muscle of the rat. FEBS Lett 1984; 167(1):1–4.

Challis R, Budohosk iL, McManus B and Newsholme E. Effects of an adenosine-receptor antagonist on insulin-resistance in soleus muscle from obese Zucker rats. Biochem J 1984; 221(3):915–917.

Thong FS, Lally JS, Dyck DJ, et al. Activation of the A1 adenosine receptor increases insulin-stimulated glucose transport in isolated rat soleus muscle. Appl Physiol Nutr Metab 2007; 32:701–710.

Hamada T, Sale DG, MacDougall JD and Tarnopolsky MA. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 2003; 178:165–173.

Salahdeen HM and Alada ARA.Effects of Caffeine and Kolanut extract on glucose uptake in the canine hind limb. Nig J Physiol Sci 2009; 24: 34 – 43.

Trinder P. Determination of glucose in blood using glucose oxidase with on alternative oxygen receptor. Ann Clin Biochem 1967; 6: 24-27.

Hespel P, Vergauwen L, Vandenberghe K and Richter EA. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 1995; 44:210–215.

Dawson D, Vincent MA, Barrett ER, et al. Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound Am J Physiol Endocrinol Metab 2002; 282: E714 - E720.

Vincent MA, Clerk LH, Lindner JR, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans Am J Physiol Endocrinol Metab 2006; 290: E1191 - E1197.

Schultz TA, Lewis SB, Westbie DK, Wallin JD and Gerich JE. Glucose delivery: a modulator of glucose uptake in contracting skeletal muscle. Am J Physiol 1977; 233(6):E514–E518.

Khayat ZA,Tsakiridis T, Ueyama A, et al. Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic Ca2+ and cPKC. Am J Physiol Cell Physiol 1998; 275:C1487-C1497.

Sandstrom ME, Zhang SJ, Westerblad H and Katz A. Mechanical load plays little role in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol 2007; 579:527–534.

Jensen TE, Rose AJ, Jorgensen SB, et al. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab 2007; 292:E1308–E1317.

Jensen TE, Angin Y, Sylow L and Richter EA. Is contraction-stimulated glucose transport feedforward regulated by Ca2+ Exp Physiol 2014; 99:1562–1568.

Heinonen I, Kemppainen J and Kaskinoro K. Effects of adenosine, exercise, and moderate acute hypoxia on energy substrate utilization of human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2012; 302:R385–R390.

Natali A, Bonadonna R, Santoro D, Galvan AQ, Baldi S, Frascerra S. Palombo C, Ghione S and Ferrannini E. Insulin resistance and vasodilation in essential hypertension. Studies with adenosine. J Clin Invest 1994; 94: 1570-1576.

Scheede-Bergdahl C, Olsen DB, Reving D, Boushel R and Dela F. insulin and non-insulin mediated vasodilation and glucose uptake in patients with type 2 diabetes. Diabetes Res Clin Pract 2009; 85: 243-251.

Battram DS, Graham TE, Richter EA and Dela F. The effect of caffeine on glucose kinetics in humans—influence of adrenaline. J Physiol 2005; 569: 347-355.

Vergauwen L, Hespel P and Richter EA. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. J Clin Invest 1994; 93: 974-981.

Han DH, Hansen PA, Nolte LA and Holloszy JO. Removal of adenosine decreases the responsiveness of muscle glucose transport to insulin and contractions. Diabetes 1998; 47: 1671-1675.

Mu J, Brozinick JT Jr, Valladares O, et al. A role for AMP activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 2001; 7:1085-1094.

Nyberg M, Mortensen SP, Saltin B, Hellsten Y and Bangsbo J. Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake. Am J Physiol Regul Integr Comp Physiol 2010; 298: 843–848.

Boushel R, Langberg H, Gemmer C, et al. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J Physiol 2002; 543:691–698.

Higashi Y, Sasaki S, Kurisu S, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 1999; 100:1194–1202.

Keijzers G B, De BE, Galan C J and Tack A P. S. Caffeine can decrease insulin sensitivity in humans. Diabetes care 2002; 25(2): 364-369.

Derave W and Hespel P. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle. J Physiol 1999; 515 (1): 255-263.

Dobson JG, Jr. Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ Res 1983; 52: 151-160.

Sung BH, Whitsett TL, Lovallo W R., et al. Prolonged increase in blood pressure by a single oral dose of caffeine in mildly hypertensive men. Am J Hypert 1994; 7: 755–758.

Martin EA, Nicholson WT, Eisenach JH, Charkoudian N and Joyner MJ. Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide component: implications for exercise hyperemia. J Appl Physiol 2006; 101:492–499.

Downloads

Published

2020-09-02

Issue

Section

Original Articles