Biochemical nutritional parameters and anthropometric measurements in Nigerian pulmonary tuberculosis patients before and during chemotherapy
Abstract
Background: Epidemiological studies have demonstrated an overlap between malnutrition and tuberculosis (TB) in most developing countries, but reports of changes in nutritional status throughout TB treatment are scarce. The objective of this study was to determine the nutritional status of pulmonary TB patients before and during anti TB chemotherapy.
Materials and methods: This study comprised of sixty eight (68) participants, twenty-four (24) multidrug-resistant TB (MDR-TB) patients, twenty-four (24) drug-sensitive TB patients(DS-TB) and 20 nonTB apparently healthy individuals. TB patients were followed-up throughout 6 months of anti-TB chemotherapy. Anthropometric measurements; mid-upper arm circumference(MUAC), weight, body mass index(BMI), percentage body fat(PBF), fat mass index(FMI), fat-free mass index(FFMI), waist circumference(WC), hip circumference(HC), waist-hip ratio(WHR), and plasma proteins(total protein, transferrin, retinol binding protein–RBP, pre-albumin and albumin) concentrations were determined.
Results: Under nutrition (BMI <18.5 kg/m2 ) was observed in 65% and 23.1% of MDR-TB patients and DS-TB patients respectively. MUAC, weight, BMI, FFMI, WC and HC were significantly reduced before commencement- and at 2 months of chemotherapy in DS-TB patients compared with controls. Plasma transferrin and pre-albumin levels were significantly increased at 2 and 4 months of chemotherapy respectively, but plasma albumin levels were increased at 2 and 4 months of chemotherapy in DS-TB patients compared with controls. In MDR-TB patients, MUAC, weight, BMI, PBF, FMI and FFMI decreased significantly before and 2 months of chemotherapy compared with controls. Plasma albumin and HC decreased significantly before chemotherapy, while plasma TP and RBP increased before chemotherapy and 2 months of chemotherapy in MDR-TB patients compared with controls. At 4 months of anti-TB chemotherapy, MUAC was decreased while plasma total protein, pre-albumin and albumin increased significantly in MDR-TB patients compared with controls. Plasma transferrin and albumin increased significantly at 6 months of chemotherapy in MDR-TB patients compared with controls.
Conclusion: Protein-calorie under nutrition remains a major challenge in TB patients and nutritional support for TB patients during anti-TB chemotherapy could ensure quicker recovery.
Keywords: Under nutrition; tuberculosis; chemotherapy, anthropometry; proteins
Résumé
Contexte: Les études épidémiologiques ont démontré un chevauchement entre la malnutrition et la tuberculose (TB) dans la plupart des pays en voie de développement, mais les rapports d’évolution de l’état nutritionnel pendant le traitement de la tuberculose sont rares. L’objectif de cette étude était de déterminer l’état nutritionnel des patients tuberculeux pulmonaires avant et pendant la chimiothérapie anti-tuberculose.
Matériaux et méthodes: Cette étude comprenait soixante-huit (68) patients atteints de tuberculose, vingtquatre (24) patients atteints de tuberculose multi-médicament-résistante (TB- MMR), vingt-quatre (24) patients atteints de tubercules sensibles aux médicaments (TB-SM) et 20 non tuberculeux apparemment en bonne santé. Les patients atteints de tuberculose ont été suivis pendant 6 mois de chimiothérapie antituberculeuse. Les mesures anthropométriques; la circonférence du milieu de l’avant-bras (CMAB), le poids, l’indice de masse corporelle (IMC), le pourcentage de graisse corporelle (PGC), l’indice de masse graisseuse (IMG), l’indice de masse sèche (IMS), le périmètre de la taille (PT), la circonférence de la hanche (CH), le rapport taille-hanche (RTH) et les concentrations de protéines plasmatiques (protéines totales, transferrine, protéines de liaison rétinol - PLR, pré-albumine et albumine) ont été déterminés.
Résultats: La sous-nutrition (IMC <18,5 kg/m2 ) a été observé chez 65% et 23,1% des patients TB- MMR et des patients TB-SM respectivement. La CMAB, le poids, l’IMC, l’IMS, le PT et la CH ont été
considérablement réduits avant le début et à 2 mois de chimiothérapie chez les patients atteints de TB-SM par rapport aux témoins. Les concentrations plasmatiques de transferrine et de pré-albumine ont été significativement augmentées à 2 et 4 mois de chimiothérapie respectivement, mais les concentrations plasmatiques d’albumine ont été augmentées à 2 et 4 mois de
chimiothérapie chez les patients atteints de TB-SM par rapport aux témoins. Chez les patients atteints de TB- MMR, la CMAB, le poids, l’IMC, le PGC, l’IMG et l’IMS ont diminué de manière significative avant et 2 mois de chimiothérapie par rapport aux témoins. L’albumine plasmatique et la CH ont diminué de manière significative avantla chimiothérapie, tandis que le plasma TP et PLR ont augmenté avant la chimiothérapie et 2 mois de chimiothérapie chez les patients atteints de TB-MMR par rapport aux témoins. À 4 mois de chimiothérapie antituberculeuse, la CMAB a diminué tandis que la protéine totale du plasma, la pré-albumine et l’albumine ont augmenté de manière significative chez les patients TB- MMR par rapport aux témoins. La transferrine plasmatique et l’albumine ont augmenté de manière significative à 6 mois de chimiothérapie chez les patients TB-MMR par rapport aux témoins.
Conclusion: La protéine calorique sous-nutrition reste un défi majeur chez les patients atteints de tuberculose et le soutien nutritionnel pour les patients atteints de tuberculose pendant la chimiothérapie anti-TB pourrait assurer une récupération plus rapide.
Mots-clés: Sous nutrition; Tuberculose; Chimiothérapie, anthropométrie; Protéines
Correspondence: Prof. O.G. Arinola, Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria. E-mail: drarinolaog64@yahoo.com.
References
Cegielski JP, Arab L and Cornoni-Huntley J. Nutritional risk factors for tuberculosis among adults in the United States, 1971-1992.Am J Tub 2012; 176:409-442.
Gupta KB, Gupta R, Atreja A, et al. Tuberculosis and nutrition, Lung India 2009; 26:9-16.
Frediani JK, Sanikidze E, Kipiani M, et al. Macronutrient intake and body composition changes during anti-tuberculosis therapy in adults. Clin Nutr. 2016; 35(1):205-212
Arinola OG and Akiibinu MO. Influence of mycobacterium tuberculosis on the serum levels of antioxidant vitamins and trace elements, Trop J Health Sci 2008; 15:1-4.
WHO.Global Tuberculosis Report 2015, WHO, Geneva, Switzerland, 2015.
Rieder HL. Interventions for tuberculosis control and elimination. Int Union against Tuberculosis and Lung Diseases. Paris, France 2002; pp 15-93.
Redinger RN. Nuclear receptors in cholesterol catabolism: molecular biology of the enterohepatic circulation of bile salts and its role in cholesterol homeostasis. J Lab Clin Med 2003; 142: 7-20.
United States Agency for International Development. Nutrition and tuberculosis: A review of literature and considerations for TB control programs. USAID 2008.
Koethe JR, Chi BH, Megazzini KM, et al. Macronutrient supplementation for malnourished HIV-infected adults: A review of the evidence in resource-adequate and resource-constrained settings, Clin Inf Dis 2009; 49:787-798.
Nube M and Van Den BoomGJ. Gender and adult undernutrition in developing countries. Ann Hum Biol 2003; 30:520-537.
United Nations Administrative Committee on Coordination Sub-Committee on Nutrition (ACC/SCN). Nutrition throughout the lifecycle: 4th report on the world nutrition situation. Geneva, Switzerland: International Food Policy Research Institute; United Nations ACC/SCN, 2000.
Hood MLH. A narrative review of recent progress in understanding the relationship between tuberculosis and protein energy malnutrition. Eur J Clin Nutr 2013; 67:1122-1128.
Li N, Manji KP, Spiegelman D, et al. Incident tuberculosis and risk factors among HIV-infected children in Tanzania. AIDS. 2013; 27(8):1273-1281.
Hanrahan CF, Golub JE, Mohapi L, et al. Body mass index and risk of tuberculosis and death. AIDS 2010; 24:1501-1508.
Zachariah R, Spielmann MP, Harries AD and Salaniponi FM. Moderate to severe malnutrition in patients with tuberculosis is a risk factor associated with early death. Trans R Soc Trop Med Hyg 2002; 96:291-294.
Krapp F, Veliz JC, Cornejo E, Gotuzzo E and Seas C. Bodyweight gain to predict treatment outcome in patients with pulmonary tuberculosis in Peru. Int J Tuberc Lung Dis 2008; 12:1153–1159.
Khan A, Sterling TR, Reves R, et al. Lack of weight gain and relapse risk in a large tuberculosis treatment trial. Am J Respir Crit Care Med 2006; 174:344-348.
WHO. Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis, 2011 Update, WHO, Geneva, Switzerland, 2011.
Arinola OG, Oluwole O, Oladokun R, et al. Intestinal helminthic infection increases serum levels of IL-2 and decreases serum TGF-Beta levels in Nigerian asthmatic patients. Open J Immunol 2014; 4:1-8.
Mupere E, Malone L, Zalwango S, et al. Lean tissue mass wasting is associated with increased risk of mortality among women with pulmonary tuberculosis in urban Uganda. Ann Epidemiol 2012; 22:466-473.
Dodor EA. Evaluation of nutritional status of new tuberculosis patients at Effia Nkwanta regional hospital. Ghana Med J 2008; 22:22-28.
Kennedy N, Ramsay A, Uiso L, et al. Nutritional status and weight gain in patients with pulmonary tuberculosis in Tanzania. Trans R Soc Trop med Hyg 1996; 90:162-166.
Schaible U and Kaufmann S. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 2007; 4:e115.
Cegielski J and McMurray D. Tuberculosis: Nutrition and susceptibility. In: Caballero B, Allen L, Prentice A (eds) Encyclopedia of human nutrition, 2ndedn. Elsevier Ltd: Oxford, UK, 2005; pp 287-294.
Compher C. The impact of protein-calorie malnutrition on drugs. In: Boullata J, Armenti V (eds) Handbook of drug-nutrient interactions. Humana Press Inc: Totowa, NJ, USA, 2005; pp 83-99.
Sushama BS and Lekshmi DR. Clinical spectrum of tuberculosis in BCG vaccinated children. Ind Pediatr 2002; 39:458-462.
Paton NI, Angus B, Chaowagul W, et al. Protein and energy metabolism in chronic bacterial infection: studies in melioidosis. ClinSci (Lond) 2001; 100:101-110.
Macallan DC, McNurlan MA, Kurpad AV, et al. Whole body protein metabolism in human pulmonary tuberculosis and undernutrition: Evidence for anabolic block in tuberculosis. Clin Sci (Lond) 1998~94:321–331.
Mupere E, Malone L, Zalwango S, et al. Wasting among Uganda men with pulmonary tuberculosis is associated with linear regain in lean tissue mass during and after treatment in contrast to women with wasting who regain fat tissue mass: prospective cohort study. BMC Inf Dis 2014; 14:24.
Kassu A, Yabutani T, Mahmud ZH, et al. Alterations in serum levels of trace elements in tuberculosis and HIV infections, Eur. J. Clin. Nutr. 2006; 60:580–586.
Karyadi E, Schultink W, Nelwan RHH, et al. Poor micronutrient status of active pulmonary tuberculosis patients in Indonesia, J. Nutr.2000;130: 2953–2958.
Damburam A, Garbati MA and Yusuph H. Serum proteins in health and in patients with pulmonary tuberculosis in Nigeria, Global J Gastroenterology Cardiology 2013; 1:12-15.
Adedapo KS, Arinola OG, Ige OM and Adedapo ADA. Combination of reduced levels of serum albumin and alpha-2-macroglobulin differentiates newly diagnosed pulmonary tuberculosis patients from patients on chemotherapy. Afr J Biomed Res 2009; 12:23-25.
Dalvi SM, Patil VW, Ramraje NN, et al. Nitric oxide, carbonyl protein, lipid peroxidation and correlation between antioxidant vitamins in different categories of pulmonary and extra pulmonary tuberculosis, Malays. J. Med. Sci. 2013;20: 21–30.
Palanisamy GS, Kirk NM, Ackart DF, et al. Evidence for oxidative stress and defective antioxidant response in Guinea pigs with tuberculosis, PLo S One 2011; 6: e26254.
Akiibinu MO, Arinola OG and Ogunyemi EO. Plasma neopterin and peroxide levels in pulmonary tuberculosis patients on chemotherapy with or without micronutrient supplementation, Pak. J. Med. Sci. 2009; 25:380–385.
WHO. Guideline: Nutritional care and support for patients with tuberculosis. Geneva: World Health Organization; 2013.