Phycosynthesis of Silver Nanoparticles Using Chlorella vulgaris Metabolites: Its Antibacterial, Anti-Biofilm and In-Vitro Cytotoxicity Potential and Effect of Optimized Conditions on Biosynthesis

Authors

  • A Salaam
  • B Adebayo-Tayo
  • A Ajibade

Abstract

Abou El-Nour K.M.M., Eftaiha A., Al-Warthan A., Ammar R.A.A. (2010). Synthesis and Applications of Silver Nanoparticles, Arabian J. Chem. 3, 135-140.

Alves M.J., Isabel C.F., Ferreira R.,  Lourenço I., Costa E., Martins A., Pintado M. (2014). Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation. Pathog. 667-679.

Ashkarran A.A. (2011). Metal and metal oxide nanostructures prepared by electrical arc discharge method in liquids, J. Cluster Sci. 22, 233.

Ashokkumar T., Vijayaraghavan K. (2016). Brown seaweed-mediated biosynthesis of gold nanoparticles. J.Environ. Biotechnol. Res. 2, 45-50.

Dakal T.C., Kumar A., Majumdar R., Yadav V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol. 7,1831.

Dumur F., Eddy A.G., Denis D., Didier B., Cedric G., Mayer, R. (2011). Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents, Gold Bull. 44, 119-137.

Finney D.J. (1971). Probit analysis, 3rd ed. Cambridge University Press, Cambridge, United Kingdom.

Habibi-Pirkoohi M., Soleimani M. (2017). Biosynthesis of silver nanoparticles using Chlorella vulgaris and evaluation of the antibacterial efficacy against Staphylococcus aureus, Avicenna J. Med. Biotechnol. 9:120-125.

He R., Qian X., Yin J. (2000). Preparation of polychrome silver nanoparticles in different solvents, J. Mat. Chem. 12, 3783–3786.

Jyoti K., Baunthiyal M., Singh A. (2016). Characterization of Silver Nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. J. Rad. Res. Appl. Sci. 9: 217-227.

Khan I., Ibrahim A.A.M., Sohail M., Qurashi A. (2017). Sono-chemical assisted synthesis of RGO / ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,Ultrasonic Sonochem. 37, 669–675.

Link S., El-Sayed M.A. Optical properties and ultrafast dynamics of metallic nanocrystals, Annual Rev. Physical Chem. 54, 331–366.

Lloyd J.R., Oremland R.S. (2006): Microbial transformations of arsenic in the environment: from soda lakes to aquifers, Elements 2:85-90.

Martinez-Gutierrez F., Boegli L., Agostinho A., Sánchez E.M., Bach H., Ruiz F., James G. (2013). Anti-biofilm activity of silver nanoparticles against different microorganisms, Biofoul. 29:651-660.

McLaughlin C.J., Chang L.J., Smith DL. Simple bench-top bioassays (brine shrimps and potato discs) for the discovery of plant anti-tumor compounds. In: Human medicinal agent from plants. Inghorn, A.D., Balandrin, M.F. (Eds) ACS Symposium. 534 American Chemical Society, Washington DC. Pp. 112-137.

Novak J.P., Feldheim D.L. (2000). Assembly of phenylacetylene bridged silver and gold nanoparticle arrays, J. American Chem. Soci. 122, 3979–3980.

Pal S., Tak Y.K., Song, J.M. (2007). Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712 –1720.

Rai M., Yadav A., Gade A. (2009): Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27, 76 83.

Rajabi S., Ramazani A., Hamidi M., Naji T. (2015): Artemia salina as a model organism in toxicity assessment of nanoparticles, Dura J. Pharmaceu. Sci. 23, 20.

Rajeshkumar S., Malarkodi C., Venkat-Kumar S.  (2017). Synthesis and Characterization of Silver Nanoparticles from Marine Brown Seaweed and Its Antifungal Efficiency against Clinical Fungal Pathogens, Asian J. Pharm. Clin. Res. 10, 190 - 193.

Raza M.A., Kanwal Z., Rauf A., Sabri A.N., Riaz S., Naseem, S. (2016). Size and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes, Nanomaterial 6, 74.

Sabri M.A., Umer A., Awan G.H. (2016): Selection of suitable biological method for the synthesis of silver nanoparticles, Nanomat. Nanotechnol. 6; 6(29), 1-20.   

Sanghi R., Verma P. (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles, Biores. Technol. 100, 501–504.

Sosa I.O., Noguez C., Barrera R.G. (2003). Optical properties of metal nanoparticles with arbitrary shapes, J. Phy. Chem.  107(26), 6269 - 6275.

Templeton A.C., Wuelfing W.P., Murray R.W. (2000). Monolayer-protected cluster molecules, Acc. Chem. Res. 33, 27-36.

Vijayan S.R., Santhiyagu P., Singamuthu M., Ahila N.K.,

Jayaraman R., Ethiraj K. (2014). Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity, The Scientific Wrld. J. 1-10.

Walters G., Parkin I.P. (2009). The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterization and applications, J. Mat. Chem.19, 574-590.

Wang L., Hu C., Shao L. (2017).  The antimicrobial activity of nanoparticles: present situation and prospects for the future, Inter. J. Nanomed. 12, 1227-1249. 

Yadav R., Satyanarayanan T., Kotwal S., Rayalu S. (2011): Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles, Curr.  Sci. 100, 520-524.

Yamamoto M., Fujishita M., Hirata A., Kawano S. (2004): Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae), J. Plant Rsc. 117, 257264.

Zaidi A.A., Malik A., Mushtaq K., Ruizhe F. (2018): Progress of microalgal biodiesel research in Pakistan, J. Plant Sci. Curr. Res. 2, 4.

References

Abou El-Nour K.M.M., Eftaiha A., Al-Warthan A., Ammar R.A.A. (2010). Synthesis and Applications of Silver Nanoparticles, Arabian J. Chem. 3, 135-140.

Alves M.J., Isabel C.F., Ferreira R., Lourenço I., Costa E., Martins A., Pintado M. (2014). Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation. Pathog. 667-679.

Ashkarran A.A. (2011). Metal and metal oxide nanostructures prepared by electrical arc discharge method in liquids, J. Cluster Sci. 22, 233.

Ashokkumar T., Vijayaraghavan K. (2016). Brown seaweed-mediated biosynthesis of gold nanoparticles. J.Environ. Biotechnol. Res. 2, 45-50.

Dakal T.C., Kumar A., Majumdar R., Yadav V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol. 7,1831.

Dumur F., Eddy A.G., Denis D., Didier B., Cedric G., Mayer, R. (2011). Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents, Gold Bull. 44, 119-137.

Finney D.J. (1971). Probit analysis, 3rd ed. Cambridge University Press, Cambridge, United Kingdom.

Habibi-Pirkoohi M., Soleimani M. (2017). Biosynthesis of silver nanoparticles using Chlorella vulgaris and evaluation of the antibacterial efficacy against Staphylococcus aureus, Avicenna J. Med. Biotechnol. 9:120-125.

He R., Qian X., Yin J. (2000). Preparation of polychrome silver nanopar¬ticles in different solvents, J. Mat. Chem. 12, 3783–3786.

Jyoti K., Baunthiyal M., Singh A. (2016). Characterization of Silver Nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. J. Rad. Res. Appl. Sci. 9: 217-227.

Khan I., Ibrahim A.A.M., Sohail M., Qurashi A. (2017). Sono-chemical assisted synthesis of RGO / ZnO Nanowire Arrays for Photoelectrochemical Water Splitting,Ultrasonic Sonochem. 37, 669–675.

Link S., El-Sayed M.A. Optical properties and ultrafast dynamics of metallic nanocrystals, Annual Rev. Physical Chem. 54, 331–366.

Lloyd J.R., Oremland R.S. (2006): Microbial transformations of arsenic in the environment: from soda lakes to aquifers, Elements 2:85-90.

Martinez-Gutierrez F., Boegli L., Agostinho A., Sánchez E.M., Bach H., Ruiz F., James G. (2013). Anti-biofilm activity of silver nanoparticles against different microorganisms, Biofoul. 29:651-660.

McLaughlin C.J., Chang L.J., Smith DL. Simple bench-top bioassays (brine shrimps and potato discs) for the discovery of plant anti-tumor compounds. In: Human medicinal agent from plants. Inghorn, A.D., Balandrin, M.F. (Eds) ACS Symposium. 534 American Chemical Society, Washington DC. Pp. 112-137.

Novak J.P., Feldheim D.L. (2000). Assembly of phenylacetylene bridged silver and gold nanoparticle arrays, J. American Chem. Soci. 122, 3979–3980.

Pal S., Tak Y.K., Song, J.M. (2007). Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712 –1720.

Rai M., Yadav A., Gade A. (2009): Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27, 76 83.

Rajabi S., Ramazani A., Hamidi M., Naji T. (2015): Artemia salina as a model organism in toxicity assessment of nanoparticles, Dura J. Pharmaceu. Sci. 23, 20.

Rajeshkumar S., Malarkodi C., Venkat-Kumar S. (2017). Synthesis and Characterization of Silver Nanoparticles from Marine Brown Seaweed and Its Antifungal Efficiency against Clinical Fungal Pathogens, Asian J. Pharm. Clin. Res. 10, 190 - 193.

Raza M.A., Kanwal Z., Rauf A., Sabri A.N., Riaz S., Naseem, S. (2016). Size and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes, Nanomaterial 6, 74.

Sabri M.A., Umer A., Awan G.H. (2016): Selection of suitable biological method for the synthesis of silver nanoparticles, Nanomat. Nanotechnol. 6; 6(29), 1-20.

Sanghi R., Verma P. (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles, Biores. Technol. 100, 501–504.

Sosa I.O., Noguez C., Barrera R.G. (2003). Optical properties of metal nanoparticles with arbitrary shapes, J. Phy. Chem. 107(26), 6269 - 6275.

Templeton A.C., Wuelfing W.P., Murray R.W. (2000). Monolayer-protected cluster molecules, Acc. Chem. Res. 33, 27-36.

Vijayan S.R., Santhiyagu P., Singamuthu M., Ahila N.K.,

Jayaraman R., Ethiraj K. (2014). Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity, The Scientific Wrld. J. 1-10.

Walters G., Parkin I.P. (2009). The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterization and applications, J. Mat. Chem.19, 574-590.

Wang L., Hu C., Shao L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future, Inter. J. Nanomed. 12, 1227-1249.

Yadav R., Satyanarayanan T., Kotwal S., Rayalu S. (2011): Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles, Curr. Sci. 100, 520-524.

Yamamoto M., Fujishita M., Hirata A., Kawano S. (2004): Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae), J. Plant Rsc. 117, 257264.

Zaidi A.A., Malik A., Mushtaq K., Ruizhe F. (2018): Progress of microalgal biodiesel research in Pakistan, J. Plant Sci. Curr. Res. 2, 4.

Published

2020-01-31

Issue

Section

Original Articles

How to Cite

Phycosynthesis of Silver Nanoparticles Using Chlorella vulgaris Metabolites: Its Antibacterial, Anti-Biofilm and In-Vitro Cytotoxicity Potential and Effect of Optimized Conditions on Biosynthesis. (2020). African Journal of Biomedical Research, 23(1), 17-23. https://ojshostng.com/index.php/ajbr/article/view/856