Zinc and Linoleic Acid Protect Against Behavioural Deficits In Rat Model Of Parkinsonism Induced With Rotenone

Authors

  • E.M. Ngala
  • H.I. Ninsiima
  • P.C. Anatole

Keywords:

Anxiety, antioxidant, olfactory deficit, sensorimotor assessment, ageing

Abstract

Little is known about the behavioural effect of either Zinc or Linoleic acid or their combination in the delay of onset of Parkinson’s disease. This study was designed to investigate the effects of Zinc and Linoleic acid in the protection of behavioural deficits in rotenone-induced Parkinsonism in rats. Thirty six young adult female rats weighing 100-150 grams divided into six groups were used. Rats were induced with Parkinsonism by subcutaneous administration of rotenone (Sigma-Aldrich, St. Louis, SA) (2.5mg/kg) once a day for seven consecutive days. Rats  received (Dimethyl sulfoxide) DMSO/Olive oil or rotenone dissolved in DMSO/Olive oil. Groups III and IV received Zinc (30mg/kg) or Linoleic acid (150µl/kg) while group V received a combination of both, two weeks prior to rotenone injection. Groups II and VI served as negative (rotenone group) and positive (Levodopa groups) controls respectively. Measurement and analysis of behavioural function in rats employed a battery of tests including Elevated Plus Maze (EPM), Open Field Test (OFT), Novel Scent and Block Tests. Rats receiving rotenone displayed bradykinesia and motor impairment in the OFT, anxiety, decrease in olfactory acuity and discrimination in EPM, and Novel Scent Test respectively. The significant increase in postural instability, impaired motor activity/coordination, increased anxiety and the decrease in rearing behaviour caused by rotenone induction was attenuated significantly by treatment with Zinc and Linoleic acid, but not their combination. These results suggest that Zinc possess significant behavioural activity while Linoleic acid improves certain aspects of sensory and motor function than their combination

References

Abdullah H. Baqui, Robert E. Black, Christa L. Fischer Walker, Shams Arifeen, Khalequz Zaman, Mohammad Yunus, M. A. W. and L. E. C. (2006). Zinc supplementation and serum zinc during diarrhea. Indian Journal of Pediatrics, 73(6), 493–497.

Blanckenberg, J., Bardien, S., Glanzmann, B., Okubadejo, N. U., & Carr, J. A. (2013). The prevalence and genetics of Parkinson’s disease in sub-Saharan Africans. Journal of the Neurological Sciences, 335(1–2), 22–25.

M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., & Durand, G. (1989). The effects of dietary alpha- linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. Journal of Nutrition, 119(12), 1880–1892. https://doi.org/0022-3166/89

Bray, T. M., & Bettger, W. J. (1990). The physiological role of zinc as an antioxidant. Free Radical Biology & Medicine, 8(3), 281–291.

Brocardo, P. S., Assini, F., Franco, J. L., Pandolfo, P., M??ller,

Y. M. R., Takahashi, R. N., … Rodrigues, A. L. S. (2007). Zinc attenuates malathion-induced depressant-like behavior and confers neuroprotection in the rat brain. Toxicological Sciences, 97(1), 140–

Calon, F., & Cole, G. (2007). Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: Evidence from animal studies. Prostaglandins Leukotrienes and Essential Fatty Acids, 77 (5–6), 287–293.

Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134(1–2), 49–57.

Denis, I., Potier, B., Vancassel, S., Heberden, C., & Lavialle, M. (2013). Omega-3 fatty acids and brain resistance to ageing and stress: Body of evidence and possible mechanisms. Ageing Research Reviews. https://doi.org/10.1016/j.arr.2013.01.007

Dotchin, C. L., Msuya, O., & Walker, R. W. (2007). The challenge of Parkinson’s disease management in Africa. Age and Ageing, 36(2), 122–127.

Doty, R. L. (2012). Olfactory dysfunction in Parkinson disease. Nature Reviews. Neurology, 8(6), 329–339.

Doty, R. L., Shaman, P., Kimmelman, C. P., & Dann, M. S. (1984). University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. The Laryngoscope. https://doi.org/10.1288/00005537-198402000-00004

Duncan-Lewis, C. A., Lukman, R. L., & Banks, R. K. (2011). Effects of zinc gluconate and 2 other divalent cationic compounds on olfactory function in mice. Comparative Medicine, 61(4), 361–365.

Dyall, S. C., & Michael-Titus, A. T. (2008). Neurological benefits of omega-3fatty acids. Neuro Molecular Medicine. https://doi.org/10.1007/s12017-008-8036-z

Eckert, G. P., Lipka, U., & Muller, W. E. (2013). Omega-3 fatty acids in neurodegenerative diseases: Focus on mitochondria. Prostaglandins Leukotrienes and Essential Fatty Acids, 88(1), 105– 114.

El-Tawil, A. M. (2003). Zinc deficiency in men with Crohn’s disease may contribute to poor sperm function and male infertility. Andrologia, 35(6), 337–341.

Elbaz, A., Carcaillon, L., Kab, S., & Moisan, F. (2016). Epidemiology of Parkinson’s disease. Revue Neurologique. https://doi.org/10.1016/j.neurol.2015.09.012

Erreger, K., & Traynelis, S. F. (2008). Zinc inhibition of rat NR1/NR2A N-methyl-D-aspartate receptors. The Journal of Physiology, 586(3), 763–778.

Fleming, S. M., Zhu, C., Fernagut, P. O., Mehta, A., DiCarlo, C. D., Seaman, R. L., & Chesselet, M. F. (2004). Behavioural and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Experimental Neurology, 187(2), 418–429.

Frederickson, C. J., Koh, J.-Y., & Bush, A. I. (2005). The neurobiology of zinc in health and disease. Nature Reviews. Neuroscience, 6(6), 449–462. https://doi.org/10.1038/nrn1671 Fujikawa, T., Kanada, N., Shimada, A., Ogata, M., Suzuki, I., Hayashi, I., & Nakashima, K. (2005). Effect of sesamin in Acanthopanax senticosus HARMS on behavioural dysfunction in rotenone-induced parkinsonian rats. Biological & Pharmaceutical Bulletin, 28(1), 169–172.

Gould, T. D., Dao, D. T., & Kovacsics, C. E. (2009). The Open Field Test. In Mood and Anxiety Related Phenotypes in Mice (pp. 1– 20). https://doi.org/10.1007/978-1-60761-303-9

Gupta, M., Gupta, B. K., Thomas, R., Bruemmer, V., Sladek, J. R., & Felten, D. L. (1986). Aged mice are more sensitive to 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment than young adults. Neuroscience Letters, 70(3), 326–331.

Hawkins, P. (2002). Recognizing and assessing pain, suffering and distress in laboratory animals: a survey of current practice in the UK with recommendations. Laboratory Animals, 36, 378–395.

Henderson, J. M., Lu, Y., Wang, S., Cartwright, H., & Halliday,

G. M. (2003). Olfactory deficits and sleep disturbances in Parkinson’s disease: a case-control survey. Journal of Neurology, Neurosurgery, and Psychiatry, 74(7), 956–958.

Hogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. In Pharmacology Biochemistry and Behavior (Vol. 54, pp. 21–30).

Holmes, A., Parmigiani, S., Ferrari, P. F., Palanza, P., & Rodgers, R. J. (2000). Behavioural profile of wild mice in the elevated plus-maze test for anxiety. Physiology and Behavior, 71(5), 509–516.

Inden, M., Kitamura, Y., Abe, M., Tamaki, A., Takata, K., & Taniguchi, T. (2011). Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biological & Pharmaceutical Bulletin, 34(1), 92–96.

Iso, H., Sato, S., Umemura, U., Kudo, M., Koike, K., Kitamura, A., … Shimamoto, T. (2002). Linoleic Acid, Other Fatty Acids, and the Risk of Stroke. Stroke, 33(8), 2086–2093.

Jafek, B. W., Linschoten, M. R., & Murrow, B. W. (2004). Anosmia after intranasal zinc gluconate use. American Journal of Rhinology, 18(3), 137–141.

Joshi, D., Mittal, D. K., Shukla, S., & Srivastav, A. K. (2012). Therapeutic potential of N-acetyl cysteine with antioxidants (Zn and Se) supplementation against dimethylmercury toxicity in male albino rats. Experimental and Toxicologic Pathology, 64(1–2), 103–108. https://doi.org/10.1016/j.etp.2010.07.001

Karr, J. E., Alexander, J. E., & Winningham, R. G. (2011). Omega-3 polyunsaturated fatty acids and cognition throughout the lifespan: A review. Nutritional Neuroscience, 14(5), 216–225.

Lehto S.M., Ruusunen A, Tolmunen T, Voutilainen S, Tuomainen TP, Kauhanen J. (2013). Dietary zinc intake and the risk of depression in middle-aged men: A 20-year prospective follow-up study. European Psychiatry, 28.

Mbiydzenyuy, N. E., Ninsiima, H. I., Valladares, M. B., & Pieme, C. A. (2018). Zinc and linoleic acid pre-treatment attenuates biochemical and histological changes in the midbrain of rats with rotenone-induced Parkinsonism. BMC Neuroscience. https://doi.org/10.1186/s12868-018-0429-9

Mulcahy, P., Walsh, S., Paucard, A., Rea, K., & Dowd, E. (2011). Characterisation of a novel model of Parkinson’s disease by intra- striatal infusion of the pesticide rotenone. Neuroscience, 181, 234– 242.

Ojha, S., Javed, H., Azimullah, S., Khair, S. B. A., & Haque, M.

E. (2015). Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Design, Development and Therapy, 9, 5499–5510. https://doi.org/10.2147/DDDT.S90616 Partyka, A., Jastrzebska-Wiesek, M., & Nowak, G. (2010). Evaluation of anxiolytic-like activity of zinc. 17th International Congress of the Polish Pharmacological Society Krynica Zdroj Poland, 62, 57–58.

Partyka, A., Jastrzȩbska-Wiȩsek, M., Szewczyk, B., Stachowicz, K., Sałwinśka, A., Poleszak, E., … Nowak, G. (2011). Anxiolytic- like activity of zinc in rodent tests. Pharmacological Reports, 63(4), 1050–1055. https://doi.org/10.1016/S1734-1140(11)70621-1

Pellow, S., Chopin, P., File, S. E., & Briley, M. (1985). Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods, 14(3), 149–167. Perfeito, R., Cunha-Oliveira, T., & Rego, A. C. (2012). Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology & Medicine, 53(9), 1791–1806.

Prema, A., Janakiraman, U., Manivasagam, T., & Arokiasamy,

J. T. (2015). Neuroprotective effect of lycopene against MPTP induced experimental Parkinson’s disease in mice. Neuroscience Letters, 599, 12–19.

Pudell, C., Vicente, B. A., Delattre, A. M., Carabelli, B., Mori, M. A., Suchecki, D., … Ferraz, A. C. (2014). Fish oil improves anxiety- like, depressive-like and cognitive behaviors in olfactory bulbectomised rats. Eur. J. Neurosci, 39(2), 266–274.

Ross, B. M. (2009). Omega-3 polyunsaturated fatty acids and anxiety disorders. Prostaglandins Leukotrienes and Essential Fatty Acids, 81(5–6), 309–312.

Samardzic, J., Savic, K., Stefanovic, N., Matunovic, R., Baltezarevic, D., Obradovic, M., … Obradovic, D. (2013). Anxiolytic and antidepressant effect of zinc on rats and its impact on general behavioural parameters. Military Medical and Pharmaceutical Journal of Serbia, 70(4), 391–395.

Sazawal, S., Black, R. E., Jalla, S., Mazumdar, S., Sinha, a, & Bhan, M. K. (1998). Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: a double-blind, controlled trial. Pediatrics.

Seki, H., Tani, Y., & Arita, M. (2009). Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1. Prostaglandins and Other Lipid Mediators. https://doi.org/10.1016/ j.prostaglandins.2009.03.002

Sherer, T. B., Richardson, J. R., Testa, C. M., Seo, B. B., Panov,

A. V., Yagi, T., … Greenamyre, J. T. (2007). Mechanism of toxicity of pesticides acting at complex I: Relevance to environmental etiologies of Parkinson’s disease. Journal of Neurochemistry, 100(6), 1469–1479.

Slotnick, B. M., Sanguino, A., Husband, S., Marquino, G., & Silberberg, A. (2007). Olfaction and olfactory epithelium in mice treated with zinc gluconate. The Laryngoscope, 117(4), 743–749.

Stanford, S. C. (2007). The Open Field Test: reinventing the wheel. Journal of Psychopharmacology (Oxford, England), 21(2), 134–135. Sydenham, E., Dangour Alan, D., & Lim, W.-S. (2012). Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database of Systematic Reviews, 07(6), 3–4.

Szewczyk, B., Poleszak, E., Sowa-Kućna, M., Siwek, M., Dudek, D., Ryszewska-Pokraśniewicz, B., … Nowak, G. (2008). Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacological Reports. https://doi.org/10.1016/j.ultrasmedbio.2011.05.163

Tan, L. C. S. (2013). Epidemiology of parkinson’s disease. Neurology Asia. https://doi.org/10.1016/S1016-3190(10)60044-4 Tanner, et al. (2011). Rotenone, Paraquat, and Parkinson’s Disease. Environmental Health Perspectives, 119, Vol. 119 No 6 866-872.

Taylor, T. N., Caudle, W. M., Shepherd, K. R., Norrian, A., Jackson, C. R., Iuvone, P. M., … Miller, G. W. (2009). Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. Journal of Neuroscience, 29(25), 8103–8113. https://doi.org/10.1523/JNEUROSCI.1495-

2009

Testa, C. M., Sherer, T. B., & Greenamyre, J. T. (2005). Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Molecular Brain Research, 134(1), 109–118.

Tillerson, J. L., Caudle, W. M., Parent, J. M., Gong, C., Schallert, T., & Miller, G. W. (2006). Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor. Behav Brain Res, 172(1), 97–105. https://doi.org/S0166-4328(06)00244-0 [pii]r10.1016/j.bbr.2006.04.025

Tõugu, V., & Palumaa, P. (2012). Coordination of zinc ions to the key proteins of neurodegenerative diseases: Aβ, APP, α-synuclein and PrP. Coordination Chemistry Reviews. https://doi.org/10.1016/j.ccr.2011.12.008

Walsh, R. N., & Cummins, R. a. (1976). The Open-Field Test: a critical review. Psychological Bulletin, 83(3), 482–504.

Wlaź, P., Kasperek, R., Wlaź, A., Szumiło, M., Wróbel, A., Nowak, G., & Poleszak, E. (2011). NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice. Pharmacological Reports, 63(6), 1526– 1532.

Zimmer, L., Delpal, S., Guilloteau, D., Aïoun, J., Durand, G., & Chalon, S. (2000). Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neuroscience Letters, 284(1–2), 25–28

Published

2020-08-05

Issue

Section

Original Articles

How to Cite

Zinc and Linoleic Acid Protect Against Behavioural Deficits In Rat Model Of Parkinsonism Induced With Rotenone. (2020). African Journal of Biomedical Research, 23(2), 247-252. https://ojshostng.com/index.php/ajbr/article/view/58

Similar Articles

1-10 of 71

You may also start an advanced similarity search for this article.