Effects of a local aphrodisiac on body weight changes, LD50, lipid profile, liver enzymes and antioxidant activities of male Wistar rats

Authors

  • E.A. Adindu
  • Obinna Godfrey University of Calabar Nigeria
  • M.O. Odey
  • I.O. Okere
  • D.A. Bisong

DOI:

https://doi.org/10.4314/ajbr.v27i2.15

Keywords:

Rejuvenator, aphrodisiac, antioxidants, liver enzymes, lipid profile

Abstract

Rejuvenator is a local commercial libido enhancing drink extensively consumed in Nigeria as ‘over-the-counter product’. Following reports from the users, it is alleged to improve libido and fertility in males. Listed as ingredients are Tribulus terrestris, Capsasine, Cilantrosied, Myristica fragrans, Zingiber officinale, Rhodiola rosea, Ocinum bacilicum, honey and cinnamon, which are natural products believed to treat erectile dysfunction in males and other ailments. In this study we aimed at investigating the effect of this aphrodisiac on LD50, body weight changes and some other biochemical parameters to ascertain the implications if any of the drink on the living system. In the experimentation, fractions of the drink (100, 200 and 400 mg/kg bodyweight) and Viagra (100 mg/kg bodyweight) were administered to Wistar rats for 21 days. Toxicity evaluation of the drink revealed that its LD50 is above 5000 mg/kg body weight. A favorable lipid profile was observed in the test groups and no significant negative impact was seen on the antioxidant enzymes. The drink has the tendency of increasing body weight and may impact the liver as both ALT and ALP were significantly high (p < 0.05) in group 3. The study has revealed that the drink has no toxicity challenge (LD50 > 5000 mg/kg bw) nor the tendency to increase free radical activity in the system as well as triggering lipid peroxidation. The animals possessed favorable lipid profile, though; some liver enzymes increased which suggests that the drink could impact on the liver and may be greater after a long-term use. Finally, the drink has the tendency to increase weight

References

Qureshi, A., Naughton, D. P., & Petroczi, A. (2014). A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. Journal of dietary supplements, 11(1), 64-79.

Santos Jr, C. A., Reis, L. O., Destro-Saade, R., Luiza-Reis, A., & Fregonesi, A. (2014). Tribulus terrestris versus placebo in the treatment of erectile dysfunction: a prospective, randomized, double-blind study. Actas Urológicas Españolas (English Edition), 38(4), 244-248.

GamalEl Din, S. F., Abdel Salam, M. A., Mohamed, M. S., Ahmed, A. R., Motawaa, A. T., Saadeldin, O. A., & Elnabarway, R. R. (2019). Tribulus terrestris versus placebo in the treatment of erectile dysfunction and lower urinary tract symptoms in patients with late-onset hypogonadism: a placebo-controlled study. Urologia Journal, 86(2), 74-78.

Kamenoz, Z., Fileva, S., Kalinov, K. and Jannini, E.A., (2017). Evaluation of the efficacy and safety of Tribulus terrestris in male sexual dysfunction- A prospective, randomnized, double blind, placebo controlled clinical trial. Maturitas 99: 20-26.

Borelli, F., Colalto, C., Delfino, D.F., Iriti, M. and Izzo, A.A., (2018). Herbal dietary supplements for erectile dysfunction: A systematic review and Meta- analysis. Drugs 78(6): 643-673.

Akhtari, E., Raisi, F. and Keshavarz, M., (2014). Tribulus terrestris for the treatment of sexual dysfunction in women: radomized double blind placebo-controlled study. Daru 22: 40

Garma, C.R., Lasmar, R. and Gama, G.F., (2014). Clinical assessment of Tribulus terrestris extract in the treatment of female sexual dysfunction. Clin.Med. Insights Women’s Health 7:45-50.

Goranova, T.E., Bozhanoz, S.S., Lozanoz, V.S.,Mitev, V.I, Kaneva, R.P. and Georgieva, E.I (). Changes in gene expression of CXCR4, CCR7and BCL2 after treatment of breast cancer cells with saponin extract from Tribulus terrestris. Neoplasma 62(1): 27-33.

Ehab, A.A. and Abir, T, E., (2016). Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg (Myristica fragrans). Phytochem. Rev. 15(6): 1035-1056.

Chuan, R.Z., Ettannil, J., Paramasivam, S.K. and Muraleedaran, G.N., (2015). Antioxidant and anti-inlammatory compounds in nutmeg (Myristica fragrans) pericarp as determined by invitro assays. Nat. Prod. Commun. 10(8): 1399-1402.

Tajuddin, A., Shamshad, A., Abdul, L. and Iqbal, A.Q., (2003). Aphrodisiac activity of 50% ethanolic extracts of Myristica fragrans and Syzygium aromaticum in male mice: a comparative study. BMC Complement Altern. Med. 3:6

Tajuddin, A., Shamshad, A., Abdul, L., Iqbal, A.Q. and Kunwa, M.Y.A., (2005). An experimental study of sexual function improving effect of Myristica fragrans. BMC Complement Altern. Med. 5: 16.

Yonghong, L., Victor, P. Michelle, B., Liankun, S., Chunli, W.,Arman, W.,Edward, U., Feng. S.L. and Xiaolin, Z., (2017). Rhodiola rosea L.: an herb with anti-stress, anti-aging and immuno stimulating properties for cancer chemoprevention. Curr. Pharmacol. Rep.3(6):384-395.

Yevgeniya, L., Irina, Z. and Anna, W., (2017). Rhodiola rosea in subjects with prolonged or chronic fatigue symptoms: Results of an open-label clinical trial. Complement Med. Res. 24(1): 46-52.

Chen, L., Shi, G. R., Huang, D. D., Li, Y., Ma, C. C., Shi, M., ... & Shi, G. J. (2019). Male sexual dysfunction: A review of literature on its pathological mechanisms, potential risk factors, and herbal drug intervention. Biomedicine & Pharmacotherapy, 112, 108585.

16.Bivalacqua, T. J., Usta, M. F., Champion, H. C., Kadowitz, P. J., & Hellstrom, W. J. (2003). Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. Journal of andrology, 24(S6), S17-S37.

31. Toda, N., Ayajiki, K., & Okamura, T. (2005). Nitric oxide and penile erectile function. Pharmacology & therapeutics, 106(2), 233-266.

Adindu, E. A., Godfrey, O. C., Agwupuye, E. I., Ekpong, B. O., Agurokpon, D. C., Ogbodo, S. E., ... & Louis, H. (2023). Structural analysis, reactivity descriptors (HOMO-LUMO, ELF, NBO), effect of polar (DMSO, EtOH, H2O) solvation, and libido-enhancing potential of resveratrol by molecular docking. Chemical Physics Impact, 7, 100296.

A. Stella, S. Marinelli, P. Berretta, R. Pacifici, A. Del Rio, Sex enhancers: challenges, threats and the need for targeted measures, Clin. Ter. 170 (3) (2019) e181–e183

V. Sharma, N.S. Chauhan, U.K. Patil, V.K. Dixit, Effect of Vajikaran Rasayana herbs in sexual behavior of old age rats, Indian J. Nat. Prod. 33 (1) (2019). [21] A.S. Bolla, A.R. Patel, R. Priefer. The silent development of counterfeit medications in developing countries–a systematic review of detection technologies, Int. J. Pharm. 587 (2020), 119702.

L. Grau, R. Soucek, M.D. Pujol, Resveratrol derivatives: synthesis and their biological activities, Eur. J. Med. Chem. 246 (2023), 114962.

Sharma, S., Sharma, A., & Gupta, U. (2021). Molecular docking studies on the anti- fungal activity of Allium sativum (Garlic) against Mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. 0.0.

P.W. Kenny, Hydrogen-bond donors in drug design, J. Med. Chem. 65 (21) (2022) 14261–14275.

N. Dege, H. G¨okce, O.E. Do˘gan, G. Alpaslan, T. A˘gar, S. Muthu, Y. Sert, Quantum computational, spectroscopic investigations on N-(2-((2-chloro-4, 5-dicyanophenyl) amino) ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with different solvents, molecular docking and drug-likeness researches, Colloids Surf. A 638 (2022), 128311.

I. Benjamin, A.D. Udoikono, H. Louis, E.C. Agwamba, T.O. Unimuke, A.E. Owen, A. S. Adeyinka, Antimalarial potential of naphthalene-sulfonic acid derivatives: molecular electronic properties, vibrational assignments, and in-silico molecular docking studies, J. Mol. Struct. 1264 (2022), 133298.

K. Thirunavukkarasu, P. Rajkumar, S. Selvaraj, R. Suganya, M. Kesavan, S. Gunasekaran, S. Kumaresan, Vibrational (FT-IR and FT-Raman), electronic (UV–Vis), NMR (1H and 13C) spectra and molecular docking analyses of anticancer molecule 4-hydroxy-3-methoxycinnamaldehyde, J. Mol. Struct. 1173 (2018) 307–320.

E.C. Agwamba, I. Benjamin, H. Louis, A.D. Udoikono, A.T. Igbalagh, T. C. Egemonye, A.S. Adeyinka, Antitubercolusic potential of amino-(formylphenyl) diazenyl-hydroxyl and nitro-substituted naphthalene-sulfonic acid derivatives: experimental and theoretical investigations, Chem. Afr. 5 (5) (2022) 1451–1467.

F.C. Asogwa, E.C. Agwamba, H. Louis, M.C. Muozie, I. Benjamin, T.E. Gber, A. I. Ikeuba, Structural benchmarking, density functional theory simulation, spectroscopic investigation and molecular docking of N-(1H-pyrrol-2-yl) methylene)-4-methylaniline as castration-resistant prostate cancer chemotherapeutic agent, Chem. Phys. Impact 5 (2022), 100091.

E.A. Eno, J.I. Mbonu, H. Louis, F.S. Patrick-Inezi, T.E. Gber, T.O. Unimuke, O. E. Offiong, Antimicrobial activities of 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone: experimental, DFT studies, and molecular docking investigation, J. Indian Chem. Soc. 99 (7) (2022), 100524.

I. Benjamin, T.E. Gber, H. Louis, T.N. Ntui, E.I. Oyo-Ita, T.O. Unimuke, A. S. Adeyinka, Modelling of aminothiophene-carbonitrile derivatives as potential drug candidates for hepatitis B and C, Iran. J. Sci. Technol. Trans. A Sci. 46 (5) (2022) 1399–1412.

C. Palanichamy, P. Pavadai, T. Panneerselvam, S. Arunachalam, E. Babkiewicz, S. Ram Kumar Pandian, S. Kunjiappan, Aphrodisiac performance of bioactive compounds from mimosa pudica Linn.: in silico molecular docking and dynamics simulation approach, Molecules 27 (12) (2022) 3799.

H. Louis, G.E. Mathias, T.O. Unimuke, W. Emori, L. Ling, A.E. Owen, C.R. Cheng, Isolation, characterization, molecular electronic structure investigation, and in-silico modeling of the anti-inflammatory potency of trihydroxystilbene, J. Mol. Struct. 1266 (2022), 133418.

Chinedu, E., Arome, D., & Ameh, F. S. (2013). A new method for determining acute toxicity in animal models. Toxicology international, 20(3), 224.

Alici, E. H., & Arabaci, G. (2016). Determination of SOD, POD, PPO and cat enzyme activities in Rumex obtusifolius L. Annual Research & Review in Biology, 11(3), 1-7.

Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical biochemistry, 47(2), 389-394

Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. In Methods in enzymology (Vol. 52, pp. 302-310). Academic press.

Rotruck, J. T. ꎬ., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W., (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588-590.

Peters, S. A., Singhateh, Y., Mackay, D., Huxley, R. R., & Woodward, M. (2016). Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis, 248, 123-131.

Sanyal, D., Mukherjee, P., Raychaudhuri, M., Ghosh, S., Mukherjee, S., & Chowdhury, S. (2015). Profile of liver enzymes in non-alcoholic fatty liver disease in patients with impaired glucose tolerance and newly detected untreated type 2 diabetes. Indian journal of endocrinology and metabolism, 19(5), 597-601.

Eric, J. & Luc T. (1999). Regulation of body weight in humans. Physiology Reviews. https://doi.org/10.1152/physrev.1999.79.2.451

Sharma, A. M., Pischon, T., Hardt, S., Kunz, I., & Luft, F. C. (2001). Hypothesis: β-adrenergic receptor blockers and weight gain: a systematic analysis. Hypertension, 37(2), 250-254.

Xihua, L. & Hong, L. (2021). Obesity: Epidemiology, pathophysiology, and therapeutics. Front. Endocrinol. (Lausanne). 12, 706978. 10.3389/fendo.2021.706978

Prachi, S., Virend, K. S., Abel, R., Fatima, H. S., Snigdha, P., Diane, E. D., and Michael, D. J. (2012). Effects of weight gain and weight loss on regional fat distribution. Am. J. Clin. Nutr., 96(2), 229 – 233. 10.3945/ajcn.111.033829

Peter Arner, Daniel P. Andersson, Jesper Bäckdahl, Ingrid ], Mikael Rydén, Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis, Cell Metabolism, Volume 28, Issue 1, 2018, Pages 45-54.e3, ISSN 1550-4131, https://doi.org/10.1016/j.cmet.2018.05.004.

Verhaegen AA, Van Gaal LF. Drugs That Affect Body Weight, Body Fat Distribution, and Metabolism. [Updated 2019 Feb 11]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537590/

Domecq, J. P., Prutsky, G., Leppin, A., Sonbol, M. B., Altayar, O., Undavalli, C., … Murad, M. H. (2015). Drugs Commonly Associated With Weight Change: A Systematic Review and Meta-analysis. The Journal of Clinical Endocrinology & Metabolism, 100(2), 363–370. doi:10.1210/jc.2014-3421

Institute of Medicine (US) Subcommittee on Military Weight Management. Weight Management: State of the Science and Opportunities for Military Programs. Washington (DC): National Academies Press (US); 2004. 3, Factors That Influence Body Weight. Available from: https://www.ncbi.nlm.nih.gov/books/NBK221834/Wrzosek, M., Woźniak, J., & Włodarek, D. (2020). The causes of adverse changes of testosterone levels in men. Expert Review of Endocrinology & Metabolism, 15(5), 355-362.

Yasar F., Ellialtioglu S., Yildiz K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ. J. Plant Physiol. 2008;55:782–786. doi: 10.1134/S1021443708060071

Yasar F., Ellialtioglu S., Yildiz K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ. J. Plant Physiol. 2008;55:782–786. doi: 10.1134/S1021443708060071

Contreras R.A., Pizarro M., Köhler H., Sáez C.A., Zúñiga G.E. Copper stress induces antioxidant responses and accumulation of sugars and phytochelatins in Antarctic Colobanthus quitensis (Kunth) Bartl. Biol. Res. 2018;51:48. doi: 10.1186/s40659-018-0197-0.

Wong HWG, Elwell JH, Oberley LW, Goeddel DV. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell. 1989;58:923–931.

Unraveling the effects of rejuvenator- a local commercial libido enhancing and fertility drink on body weight changes, LD50, lipid profile, liver enzymes and antioxidant activities of male albino Wistar rats.

Downloads

Published

2024-05-31

Issue

Section

Original Articles

How to Cite

Effects of a local aphrodisiac on body weight changes, LD50, lipid profile, liver enzymes and antioxidant activities of male Wistar rats. (2024). African Journal of Biomedical Research, 27(2), 309-316. https://doi.org/10.4314/ajbr.v27i2.15

Similar Articles

1-10 of 60

You may also start an advanced similarity search for this article.