Antibacterial Activities of Penicillium roqueforti, Penicillium camemberti and Geotrichum candidum on Multi-Resistant Bacteria
DOI:
https://doi.org/10.4314/ajbr.v27i1.19Keywords:
nosocomial infections, antibiotic resistance, cheese moulds, isolation, antibacterialsAbstract
Hospital-acquired infections become prevalent and dangerous because they are caused by multiresistant bacteria. In this work, the resistance of some nosocomial bacteria was tested using an antibiotic resistance test; then, three moulds isolated from Roquefort and Camembert cheeses were evaluated for their antibacterial activity. The results showed that all the bacteria were resistant to several antibiotics. The three moulds isolated from the cheeses were identified as Penicillium roqueforti, Penicillium camemberti and Geotrichum candidum. These species demonstrated good antibacterial activity against the tested bacteria, although P. roqueforti performed best. Enterobacter cloacae was the most sensitive to the moulds, and Staphylococcus aureus was the only bacterium that was resistant to all the antibiotics and all three moulds. The in vivo antibacterial activity of P. roqueforti confirmed that this mould was able to treat Escherichia coli and E. cloacae infections in mice. Similar to the in vitro activity, E. cloacae demonstrated the highest in vivo sensitivity to the mould
References
Agrawal Y., Narwani T., Subramanian S. (2016): Genome sequence and comparative analysis of clavicipitaceous insect-pathogenic fungus Aschersonia badia with Metarhizium spp. BMC Genomics. 17, 367.
Botton B., Breton A., Fevre M., Gauthier S., Guy P., Laprent J. P., Reymond P., Sanglier J. J., Vayssier Y., Veau, P. (1990): Moisissures utiles et nuisibles: Importance industrielle (Second edition). Edition Masson, pp. 44-200, Dunod, France.
Chibani-Chennoufi S., Sidoti J., Bruttin A., Kutter E., Sarker S., Brüssow H. (2004): In vitro and in vivo bacteriolytic activities of Escherichia coli phages: Implications for phage therapy. Antimicrob. Agents Chemother. 48, 2558–2569.
Davies J., Davies D. (2010): Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433.
Galli B. D., Martin J. G., da Silva P. P., Porto E., Spoto M. H. (2016): Sensory quality of camembert-type cheese: Relationship between starter and ripening moulds. Int. J. Food Microbiol. 234, 71–75.
Ismaiel A. A., Ahmed A. S., El-Sayed el-S. R. (2014): Optimization of submerged fermentation conditions for immunosuppressant mycophenolic acid production by Penicillium roqueforti isolated from blue-moulded cheeses: Enhanced production by ultraviolet and gamma irradiation. World J. Microbiol. Biotechnol. 30, 2625–2638.
Javadi K., Mohebi S., Motamedifar M., Hadi, N. (2020): Characterization and antibiotic resistance pattern of diffusely adherent Escherichia coli (DAEC), isolated from paediatric diarrhoea in Shiraz, southern Iran. New Microbes New Infect. 38, 100780.
Khoramnia A., Ebrahimpour A., Ghanbari R., Ajdari Z., Lai O. M. (2013): Improvement of medium chain fatty acid content and antimicrobial activity of coconut oil via solid-state fermentation using a Malaysian Geotrichum candidum. Biomed. Res. Int. 2013, 954542.
Kshetry A. O., Pant N. D., Bhandari R., Khatri S., Shrestha K. L., Upadhaya S. K., Poudel A., Lekhak B., Raghubanshi B. R. (2016): Minimum inhibitory concentration of vancomycin to methicillin resistant Staphylococcus aureus isolated from different clinical samples at a tertiary care hospital in Nepal. Antimicrob. Resist. Infect. Control. 21, 27.
Larsen A. G., Knochel S. (1997): Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system. J. Appl. Microbiol. 83, 111–119.
Lowy F. D. (2003): Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Invest. 111, 1265–1273.
Nazzaro F., Fratianni F., De Martino L., Coppola R., de Feo V. (2013): Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 25, 1451–1474.
Neu H. C., Kamimura T. (1981): In vitro and in vivo antibacterial activity of FR-31564, a phosphonic acid antimicrobial agent. Antimicrob. Agents Chemother. 19, 1013–1023.
Pantosti A., Sanchini A., Monaco M. (2007): Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2, 323–334.
Peleg A. Y., Hooper D. C. (2010): Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 362, 1804–1813.
Rajkowska K., Kunicka-StyczynBska A., Rygal´a A. (2012): Probiotic activity of Saccharomyces cerevisiae var. boulardii against human pathogens. Food Technol. Biotechnol. 50, 230–236.
Ropars J., Caron T., Lo Y. C., Bennetot B., Giraud T. (2020): La domestication des champignons Penicillium du fromage. C R Biol. 343, 155 –176.
Sanchez S., Mc Crackin Stevenson M. A., Hudson C. R., Maier M., Buffington T., Dam Q., Maurer J. J. (2002): Characterization of multidrug-resistant Escherichia coli isolates associated with nosocomial infections in dogs. J. Clin. Microbiol. 40, 3586–3595.
Silva M. G., Furtado N. A., Pupo M. T., Fonseca M. J., Said S., da Silva Filho A. A., Bastos J. K. (2004): Antibacterial activity from Penicillium corylophilum Dierckx. Microbiol. Res. 159, 317–322.
Souli M., Galani I., Giamarellou H. (2008): Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Eurosurveillance. 13, 19045.
Vallone L., Giardini A., Soncini G. (2014): Secondary metabolites from Penicillium roqueforti, a starter for the production of Gorgonzola cheese. Ital. J. Food Saf. 3, 173–177.
Wang J. B., St Leger R. J., Wang C. (2016): Advances in genomics of enthomopathogenic fungi. Adv. Genet. 94, 67–105
Downloads
Published
Issue
Section
License
Copyright (c) 2023 African Journal of Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.