Synergistic vascular response to combined effect of high salt diet and high environmental temperature mitigated by angiotensin II receptor blocker in rat model


vascular response
ngiotensin receptor blocker
high salt
chronic heat exposure

How to Cite

Agbaraolorunpo, F., Oloyo, A. K., Sanni, D. A., Adejare, A., & Anigbogu, C. N. (2023). Synergistic vascular response to combined effect of high salt diet and high environmental temperature mitigated by angiotensin II receptor blocker in rat model. African Journal of Biomedical Research, 26(3), 395–402.


This study investigated the plausible role of angiotensin II receptor on vascular mechanism underlying the pathophysiology of salt-induced hypertension in rats exposed to high environmental temperature chronically.  Aortic rings were obtained from seven groups of male Sprague Dawley rats (n=6)  including control rats (I) fed with 0.3% NaCl diet (normal diet, ND); salt-loaded rats (II) fed with 8% NaCl high salt diet (HSD); ND rats (III) exposed to HET (38.5±0.5 oC) 4 hours daily per week; rats (IV) fed with 8% NaCl diet and exposed to HET daily; rats (V) fed with 8% NaCl diet and treated with telmisartan (30mg/kg); ND rats (VI) exposed to HET and treated with telmisartan; rats (VII) fed with 8% NaCl diet, exposed to HET and treated with telmisartan. Photomicrography study was conducted on the first set of rings and the second set of rings were pre-contracted with Norepinephrine (NE) at 10-4 or 10-5, M to obtain a maximum peak contractile response, followed by the assessment of vascular relaxation response to graded doses of acetylcholine (Ach) and sodium nitroprusside (SNP) respectively from10 -9 to 10-4 M in endothelial intact aortic rings.  Vascular relaxation to Ach and SNP were impaired in rings of rats fed a HSD and exposed to HET respectively and combined, with non-synergistic response. But in contrast, contractile response to NE in vessels with combined exposure was synergistic, but mitigated by telmisartan, an angiotensin II receptor blocker, ditto for the photomicrograph of the vessels. Angiotensin II blockade with telmisartan partly mitigated the deleterious vascular impact of combined exposure to high salt diet and environmental heat.


Adegunloye, B. J., & Sofola, O. A. (1997). Effect of dietary salt loading and high-calcium diet on vascular smooth muscle responses and endothelium function in rats. Clinical and Experimental Pharmacology & Physiology, 24(11), 814–818.

Agbaraolorunpo, F. M., Oloyo, A. K., Anigbogu, C. N., & Sofola, O. A. (2019). Chronic exposure to high environmental temperature exacerbates sodium retention and worsens the severity of salt-induced hypertension in experimental rats via angiotensin receptor activation. Journal of African Association of Physiological Sciences, 7(2), Article 2.

Barić L, Drenjančević I, Matić A., et al (2019). Seven-Day Salt Loading Impairs Microvascular Endothelium-Dependent Vasodilation without Changes in Blood Pressure, Body Composition and Fluid Status in Healthy Young Humans—FullText—Kidney and Blood Pressure Research., 2019; 44 No.4—Karger Publishers. Retrieved 13 January 2021, from

Bragulat, E., de la Sierra, A., Antonio, M. T., & Coca, A. (2001). Endothelial dysfunction in salt-sensitive essential hypertension. Hypertension (Dallas, Tex.: 1979), 37(2 Pt 2), 444–448.

Chen, H. I., Hu, C. T., Wu, C. Y., et al. (1997). Nitric Oxide in Systemic and Pulmonary Hypertension. Journal of Biomedical Science. 4(5): 244–248

Csonka, C., Páli, T., Bencsik, P., Görbe, A., Ferdinandy, P., & Csont, T. (2015). Measurement of NO in biological samples. British Journal of Pharmacology, 172(6), 1620–1632.

dos Santos, L., Gonçalves, M. V., Vassallo, D. V., Oliveira, E. M., & Rossoni, L. V. (2006). Effects of high sodium intake diet on the vascular reactivity to phenylephrine on rat isolated caudal and renal vascular beds: Endothelial modulation. Life Sciences, 78(19), 2272–2279.

Eguchi, S., Kawai, T., Scalia, R., & Rizzo, V. (2018). Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension (Dallas, Tex.: 1979), 71(5), 804–810.

Endo, S., Mori, T., Yoneki, Y., Nakamichi, T., Hosoya, T., Ogawa, S., Tokudome, G., Hosoya, T., Miyata, T., & Ito, S. (2009). Blockade of angiotensin II type-1 receptor increases salt sensitivity in Sprague-Dawley rats. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 32(6), 513–519.

Esper, R. J., Nordaby, R. A., Vilariño, J. O., Paragano, A., Cacharrón, J. L., & Machado, R. A. (2006). Endothelial dysfunction: A comprehensive appraisal. Cardiovascular Diabetology, 5, 4.

Geng, Y., Zhu, L., Liu, F., Zhu, X., Niu, J., & Li, G. (2016). Effect of dehydration heat exposure on thoracic aorta reactivity in rats. Biomedical Reports, 5(5), 613–617.

Ghiadoni, L., Virdis, A., Magagna, A., Taddei, S., & Salvetti, A. (2000). Effect of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension (Dallas, Tex.: 1979), 35(1 Pt 2), 501–506.

Hermann, M., Flammer, A., & Lüscher, T. F. (2006). Nitric oxide in hypertension. Journal of Clinical Hypertension (Greenwich, Conn.), 8(12 Suppl 4), 17–29.

Hofmann, F., Feil, R., Kleppisch, T., & Schlossmann, J. (2006). Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiological Reviews, 86(1), 1–23.

Kagota, S., Tamashiro, A., Yamaguchi, Y., Nakamura, K., & Kunitomo, M. (2002). High salt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. The Journal of Pharmacology and Experimental Therapeutics, 302(1), 344–351.

Lassègue, B., Sorescu, D., Szöcs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D., & Griendling, K. K. (2001). Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circulation Research, 88(9), 888–894.

Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England), 380(9859), 2095–2128.

Massett, M. P., Lewis, S. J., & Kregel, K. C. (1998). Effect of heating on the hemodynamic responses to vasoactive agents. The American Journal of Physiology, 275(3), R844-853.

Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. (2015). American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation., 131(4): e29-322.

Moshage, H., Kok, B., Huizenga, J. R., & Jansen, P. L. (1995). Nitrite and nitrate determinations in plasma: A critical evaluation. Clinical Chemistry, 41(6 Pt 1), 892–896.

Mudau, M., Genis, A., Lochner, A., & Strijdom, H. (2012). Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovascular Journal of Africa, 23(4), 222–231.

National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. (2011). Guide for the Care and Use of Laboratory Animals (8th ed.). National Academies Press (US).

Nurkiewicz, T. R., Wu, G., Li, P., & Boegehold, M. A. (2010). Decreased arteriolar tetrahydrobiopterin is linked to superoxide generation from nitric oxide synthase in mice fed high salt. Microcirculation (New York, N.Y.: 1994), 17(2), 147–157.

Okello, S., Muhihi, A., Mohamed, S. F., Ameh, S., Ochimana, C., Oluwasanu, A. O., Bolarinwa, O. A., Sewankambo, N., & Danaei, G. (2020). Hypertension prevalence, awareness, treatment, and control and predicted 10-year CVD risk: A cross-sectional study of seven communities in East and West Africa (SevenCEWA). BMC Public Health, 20(1), 1706.

Oloyo, A. K., Sofola, O. A., & Yakubu, M. A. (2016). Orchidectomy attenuates high-salt diet-induced increases in blood pressure, renovascular resistance, and hind limb vascular dysfunction: Role of testosterone. Clinical and Experimental Pharmacology & Physiology, 43(9), 825–833.

Radenković, M., Stojanović, M., Potpara, T., & Prostran, M. (2013). Therapeutic approach in the improvement of endothelial dysfunction: The current state of the art. BioMed Research International, 2013, 252158.

Raffai, G., Durand, M. J., & Lombard, J. H. (2011). Acute and chronic angiotensin-(1-7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. American Journal of Physiology. Heart and Circulatory Physiology, 301(4), H1341-1352.

Salum, E., Butlin, M., Kals, J., Zilmer, M., Eha, J., Avolio, A. P., Arend, A., Aunapuu, M., & Kampus, P. (2014). Angiotensin II receptor blocker telmisartan attenuates aortic stiffening and remodelling in STZ-diabetic rats. Diabetology & Metabolic Syndrome, 6, 57.

Sofola, O. A., Knill, A., Hainsworth, R., & Drinkhill, M. (2002). Change in endothelial function in mesenteric arteries of Sprague-Dawley rats fed a high salt diet. The Journal of Physiology, 543(Pt 1), 255–260.

Sun, J., Zhang X.J., Broderick, M.,et al. (2003). Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors. 3:276–284

Susic, D., Varagic, J., & Frohlich, E. D. (2010). Cardiovascular effects of inhibition of renin-angiotensin-aldosterone system components in hypertensive rats given salt excess. American Journal of Physiology. Heart and Circulatory Physiology, 298(4), H1177-1181.

Torfgård, K. E., & Ahlner, J. (1994). Mechanisms of action of nitrates. Cardiovascular Drugs and Therapy, 8(5), 701–717.

Triggle, C. R., Samuel, S. M., Ravishankar, S., Marei, I., Arunachalam, G., & Ding, H. (2012). The endothelium: Influencing vascular smooth muscle in many ways. Canadian Journal of Physiology and Pharmacology, 90(6), 713–738.

Wang, H. D., Xu, S., Johns, D. G., Du, Y., Quinn, M. T., Cayatte, A. J., & Cohen, R. A. (2001). Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circulation Research, 88(9), 947–953.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 African Journal of Biomedical Research