Thrombospondin-2 in HIV-Associated Preeclampsia


endothelial damage

How to Cite

Naidoo, G., Govender, N., & Naicker, T. (2022). Thrombospondin-2 in HIV-Associated Preeclampsia. African Journal of Biomedical Research, 26(3), 389–393.


To determine the serum concentration of TSP-2 in HIV-associated preeclampsia, archived serum samples from normotensive (n=36) and preeclamptic (n=36) pregnant groups, which were further subdivided by HIV status, were used to measure TSP-2 levels, using MilliPlex immunoassays.  A statistical difference was noted for gestational age, systolic blood pressure, diastolic blood pressure and baby weight (p < 0.0001). Based on pregnancy type (normotensive vs preeclamptic), no significant difference in TSP-2 levels was observed regardless of HIV status (26.61 ng/ml; 95% CI: 17.52-34.67 vs 25.35ng/ml; 95% CI: 18.32-37.49). Based on HIV status, a significant increase of TSP-2 levels (p = 0.04) was observed in HIV-positive (29.66 ng/ml; 95% CI: 21.99-38.01) vs HIV-negative (24.34 ng/ml; 95% CI: 16.24-31.48) women. Based on pregnancy type and HIV status, TSP-2 levels were statistically significant between the P+ve and N-ve; and P+ve and P-ve groups (p = 0.01) respectively. The significant TSP-2 elevation noted in preeclamptic versus normotensive pregnancies, may account for the defective trophoblast cell invasion in preeclampsia. Based on HIV status, TSP-2 levels was significantly upregulated, which may be attributed to the action of HIV tat protein. TSP-2 may be a potential biomarker for the early detection of preeclampsia development


Adams J. C. & Lawler J. (2004): The thrombospondins. Int. J. Biochem. Cell Biol. 36, 961-968.

Adams J. C., Tucker R. P. & Lawler J. 1995. The thrombospondin gene family, Austin (TX), Springer Verlag.

Basu J. K., Chauke L. & Magoro T. (2021): Maternal mortality from COVID 19 among South African pregnant women. J. Matern. Fetal Neonatal Med., 1-3.

Bornstein P., Agah A. & Kyriakides T. R. (2004): The role of thrombospondins 1 and 2 in the regulation of cell–matrix interactions, collagen fibril formation, and the response to injury. Int. J. Biochem. Cell Biol. 36, 1115-1125.

Bornstein P., Armstrong L. C., Hankenson K. D., Kyriakides T. R. & Yang Z. (2000): Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol. 19, 557-568.

Brown M. A. (2018): Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 72, 24.

Caccuri F., Rueckert C., Giagulli C., Schulze K., Basta D., Zicari S., Marsico S., Cervi E., Fiorentini S. & Slevin M. (2014): HIV-1 matrix protein p17 promotes lymphangiogenesis and activates the endothelin-1/endothelin B receptor axis. Arterioscler. Thromb. Vasc. Biol. 34, 846-856.

Crombie R. (2000): Mechanism of thrombospondin-1 anti-HIV-1 activity. AIDS Patient Care STDS 14, 211-214.

Daniel C., Amann K., Hohenstein B., Bornstein P. & Hugo C. (2007): Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in experimental glomerulonephritis in mice. J. Am. Soc. Nephrol. 18, 788-798.

Department of health. 2017. Saving mothers 2017: annual report on confidential inquiries into maternal death in South Africa [Online]. Republic of South Africa: National Department of Health. Available: [Accessed].

Govender N., Naicker T. & Moodley J. (2015): Endoglin in HIV-associated preeclamptic placentae. Hypertens. Pregnancy 34, 342-354.

Hynes R. O. (2002): Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.

Jiang Y. M., Yu D. L., Hou G. X., Jiang J. L., Zhou Q. & Xu X. F. (2019): Serum thrombospondin-2 is a candidate diagnosis biomarker for early non-small-cell lung cancer. Biosci. Rep. 39, BSR20190476.

Jiménez B., Volpert O. V., Crawford S. E., Febbraio M., Silverstein R. L. & Bouck N. (2000): Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med. 6, 41-48.

Lawler J. (2000): The functions of thrombospondin-1 and-2. Curr. Opin. Cell Biol. 12, 634-640.

Lawler P. R. & Lawler J. (2012): Molecular basis for the regulation of angiogenesis by thrombospondin-1 and-2. Cold Spring Harb. Perspect. Med. 2, a006627.

Li Z., Calzada M. J., Sipes J. M., Cashel J. A., Krutzsch H. C., Annis D. S., Mosher D. F. & Roberts D. D. (2002): Interactions of thrombospondins with α4β1 integrin and CD47 differentially modulate T cell behavior. J. Cell Biol. 157, 509-519.

Maclauchlan S. C., Calabro N. E., Huang Y., Krishna M., Bancroft T., Sharma T., Yu J., Sessa W. C., Giordano F. & Kyriakides T. R. (2018): HIF-1α represses the expression of the angiogenesis inhibitor thrombospondin-2. Matrix Biol. 65, 45-58.

Maharaj N. R., Phulukdaree A., Nagiah S., Ramkaran P., Tiloke C. & Chuturgoon A. A. (2017): Pro-inflammatory cytokine levels in HIV infected and uninfected pregnant women with and without preeclampsia. PLoS One. 12, e0170063.

Merviel P., Challier J. C., Carbillon L., Foidart J.-M. & Uzan S. (2001): The role of integrins in human embryo implantation. Fetal Diagn. Ther. 16, 364-371.

Naicker T., Dorsamy E., Ramsuran D., Burton G. J. & Moodley J. (2013): The role of apoptosis on trophoblast cell invasion in the placental bed of normotensive and preeclamptic pregnancies. Hypertens. Pregnancy 32, 245-256.

Naidoo N., Moodley J. & Naicker T. (2021): Maternal endothelial dysfunction in HIV-associated preeclampsia comorbid with COVID-19: a review. Hypertens. Res. 44, 386-398.

Nakao T. & Morita H. (2019): Thrombospondin-2. Int. Heart J. 60, 235-237.

Ngene N. C., Moodley J. & Naicker T. (2019): The performance of pre-delivery serum concentrations of angiogenic factors in predicting postpartum antihypertensive drug therapy following abdominal delivery in severe preeclampsia and normotensive pregnancy. PLoS One 14, e0215807.

Nikuei P., Malekzadeh K., Rajaei M., Nejatizadeh A. & Ghasemi N. (2015): The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia. Iran. J. Reprod. Med. 13, 251.

Park Y. W., Kang Y. M., Butterfield J., Detmar M., Goronzy J. J. & Weyand C. M. (2004): Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am. J. Pathol. 165, 2087-2098.

Paydas S., Ergin M., Seydaoglu G., Erdogan S. & Yavuz S. (2009): Pronostic significance of angiogenic/lymphangiogenic, anti-apoptotic, inflammatory and viral factors in 88 cases with diffuse large B cell lymphoma and review of the literature. Leuk. Res. 33, 1627-1635.

Pellerin S., Lafeuillade B., Chambaz E. & Feige J.-J. (1994): Distinct effects of thrombospondin-1 and CISP/thrombospondin-2 on adrenocortical cell spreading. Mol. Cell. Endocrinol. 106, 181-186.

Phipps E. A., Thadhani R., Benzing T. & Karumanchi S. A. (2019): Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nature Reviews Nephrology 15, 275-289.

Rusnati M., Taraboletti G., Urbinati C., Tulipano G., Giuliani R., Molinari-Tosatti M., Sennino B., Giacca M., Tyagi M. & Albini A. (2000): Thrombospondin‐1/HIV‐1 Tat protein interaction: modulation of the biological activity of extracellular Tat. The FASEB Journal. 14, 1917-1930.

Simantov R., Febbraio M. & Silverstein R. (2005): The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol. 24, 27-34.

Statistics South Africa. 2021. Mid-year population estimates [Online]. Pretoria: Statistics South Africa. Available: [Accessed].

Steegers E. A., Von Dadelszen P., Duvekot J. J. & Pijnenborg R. (2010): Pre-eclampsia. The Lancet. 376, 631-644.

Stenczer B., Molvarec A., Veresh Z., Gullai N., Nagy G. R., Walentin S., Szijártó J. & Rigó J. (2011): Circulating levels of the anti‐angiogenic thrombospondin 2 are elevated in pre‐eclampsia. Acta Obstet. Gynecol. Scand. 90, 1291-1295.

Streit M., Riccardi L., Velasco P., Brown L. F., Hawighorst T., Bornstein P. & Detmar M. (1999): Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 96, 14888-14893.

Van Oorschot A. A., Smits A. M., Pardali E., Doevendans P. A. & Goumans M. J. (2011): Low oxygen tension positively influences cardiomyocyte progenitor cell function. J. Cell. Mol. Med. 15, 2723-2734.

Venkatesha S., Toporsian M., Lam C., Hanai J.-I., Mammoto T., Kim Y. M., Bdolah Y., Lim K.-H., Yuan H.-T. & Libermann T. A. (2006): Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642-649.

Verma S., Pillay P., Naicker T., Moodley J. & Mackraj I. (2018): Placental hypoxia inducible factor-1α & CHOP immuno-histochemical expression relative to maternal circulatory syncytiotrophoblast micro-vesicles in preeclamptic and normotensive pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 220, 18-24.

Volpert O. V., Tolsma S. S., Pellerin S., Feige J.-J., Chen H., Mosher D. F. & Bouck N. (1995): Inhibition of angiogenesis by thrombospondin-2. Biochem. Biophys. Res. Commun.. 217, 326-332.

Yang Y., Li H., Ma Y., Zhu X., Zhang S. & Li J. (2019): MiR-221-3p is down-regulated in preeclampsia and affects trophoblast growth, invasion and migration partly via targeting thrombospondin 2. Biomed. Pharmacother. 109, 127-134.

Zhou F., Xue M., Qin D., Zhu X., Wang C., Zhu J., Hao T., Cheng L., Chen X. & Bai Z. (2013): HIV-1 Tat promotes Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3β signaling pathway. PLoS One. 8, e53145.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 African Journal of Biomedical Research