Characterization and antibiotic resistance of E. coli recovered from healthy captive Non – human Primates in Nigeria.
Click to view file (PDF)

How to Cite

Okunlade, A., & Ogunro, B. N. (2022). Characterization and antibiotic resistance of E. coli recovered from healthy captive Non – human Primates in Nigeria. African Journal of Biomedical Research, 25(2), 191–196.


Escherichia coli is one of the members of the family Enterobacteriacea. The cells appear rod like in shape and are Gram-negative bacteria. It is part of micro flora of animals with non-human primates (NHPs) inclusive. E. coli is pathogenic and is causal organism of diarrhea all over the world. The aims of this study are to determine whether non – human primates are reservoirs for E. coli, to investigate the relatedness of E. coli with others in some regions and to determine the antibiotic sensitivity as well as resistance of the isolates. Escherichia coli were recovered from 5 (11%) out of the 43 NHPs. All the isolates appeared non- haemolytic. Findings of this study revealed that the isolates showed high level resistance to Amoxicillin/clavulanic (80%), Sulphamethoxazole/trimethoprim (80%), Gentamycin (60%), Cefoxitin (60%) and Ciprofloxacin (60%). Most of the isolates are multidrug resistant, showing resistance to two, three or more antibiotics. There are similar genetic backgrounds within E. coli isolates identified from Cercopithecus mona and Cercopithecus sebaeus. Clustering shows that isolates from Cercopithecus mona and Papio Anubis clustered together within the same clade.

Wild monkeys usually interact with humans through activities such as domestication and tourism. Through these interactions, pathogenic bacteria are transmitted from humans and animals, particularly wild monkeys. This is a potential source of infections in man. Isolation of E. coli in this study shows that NHPs are natural reservoirs of the organisms, the isolates are genetically related to each other and are multidrug resistant.

Keywords: E. coli, non- human primates, antibiotics resistance, sequence.
Click to view file (PDF)


Ahmed S., Olsen J. E., Herrero-Fresno A. (2017): The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS ONE 12(5).

Bentley R., Meganathan R. (1982): Biosynthesis of vitamin K (Menaquinone) in bacteria. Microbiol Rev 46(3):241-280.

Bueris V., Sircili M. P., Taddei C. R., dos Santos M. F., Franzolin M. R., Martinez M, B. (2007): Detection of diarrheagenic Escherichia coli from children with and without diarrhea in Salvador.Bahia,Brazil. 102(7):839–44.

Bruce H. J., David H. F., James E. C., Melissa C. L., David H. Z., Darrell D. J. (1989): Attaching and effacing Escherichia coli infections in calves, pigs, lambs, and dogs. J Vet Diagn Invest 1:6-11.

Carvalho V. M., Gyles C. L., Ziebell K., Ribeiro M. A., Catao-Dias J. L., Sinhorini I. L. (2003): Characterization of monkey enteropathogenic Escherichia coli (EPEC) and human typical and atypical EPEC serotype isolates from neotropical nonhuman primates. J Clin Microbiol 41(3):1225–34.

Cars O., Hogberg L. D., Murray M. (2008): Meeting the challenge of antibiotic resistance. BMJ 337: 1438

Chen H. D., and Frankel G. (2005): Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 29(1):83–98.

Foster- Nyarko E., Alikhan N., Ravi A., Thilliez G., Thomson N. M., Baker D., Kay G. (2020): Genomic diversity of Escherichia coli isolates from non- human primates in the Gambia. Microbial Genomics 2020;6

Felsenstein J. (1985): Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.

Hall T., A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 41:95–8.

Jukes T., H and Cantor C., R (1969): Evolution of protein molecules. In Munro HN, editor, Mammalian Protein Metabolism, pp. 21-132, Academic Press, New York.

Kaper J. B., Nataro J. P., Mobley H. L T. (2004): Pathogenic Escherichia coli. Nat Rev Micro 2(2):123–40.

Levine M. M. (1987): Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis 155(3):377–89.

Lozupone C. A., Stombaugh J, Gonzalez A, Ackermann G, Wendel D. (2013): Meta- analyses of studies of the human microbiota. Genome Res 23: 1704–1714.

Mansfield K. G, Kuei-Chin L. J., Newman D. S., Mackey J, Lackner A. A., and Carville A. (2001): Identification of enteropathogenic Escherichia coli in simian immunodeficiency virus-infected infant and adult rhesus macaques. J. Clin. Microbiol. 39:971–976.

Moeller A., H, Caro- Quintero A, Mjungu D, Georgiev A. V., Lons-dorf E. V. (2016): Cospeciation of gut microbiota with hominids. Science 2016; 353:380–382.

Muhire B. M., Varsani A., Martin D. P. (2014): SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoSOne. 9.

Rwego I. B., Isabirye-Basuta G, Gillespie T. R, Goldberg T. L. (2008): Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi impenetrable National Park. Uganda. Conserv Biol 22(6):1600–7.

Sarker M. M. R., Islam K.N., Huri H. Z., Rahman M and Imam H. (2014): Studies of the impact of occupational exposure of pharmaceutical workers on the development of antimicrobial drug resistance. J. Occup. Health, 56: 260-270.

Saitou N and Nei M. (1987): The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406 - 425.

Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. (2013): MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.

Thomson J. A., and Scheffler J. J. (1996): Hemorrhagic typhlocolitis associated with attaching and effacing Escherichia coli in common marmosets. Lab. Anim. Sci. 46:275–279.

Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L. (2016): Antimicrobial resistance in wildlife. J Appl Ecol. 53:519–52.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 African Journal of Biomedical Research