Effect of Moringa oleifera feed inclusion on nω-nitro-l-arginine methyl ester (L-NAME)-induced hypertension in a murine model
DOI:
https://doi.org/10.54548/njps.v39i1.17Keywords:
Moringa oliefera, Hypertension, L-NAME, Oxidative Stress, Nitric oxideAbstract
Moringa oleifera (MO) has been recognized for its numerous beneficial properties. This study aimed to evaluate the potential antihypertensive effects of MO seeds in rats subjected to Nω-nitro-L-arginine methyl ester (L-NAME) exposure. Fifty male Wistar rats were randomly divided into five groups of 10 rats each for the experiment. Group A served as the control, received normal saline only, Group B received L-NAME (40 mg/kg) only, Group C received L-NAME (40 mg/kg) + 10% MO feed, Group D received L-NAME (40 mg/kg) + 20% MO feed, and Group E received L-NAME (40 mg/kg) + Lisinopril (10 mg/kg). Treatment was daily and covered a period of 5 weeks. Blood pressure and electrocardiographic measurements were obtained using a non-invasive tail cuff blood pressure device and a 6/7 lead computer ECG equipment, respectively. Heart and kidney tissues were analyzed for oxidative stress parameters, and immunohistochemistry and histopathology of the heart and kidney were conducted using standard methods. L-NAME treatment led to a significant increase in diastolic and systolic values compared to the control group. Serum nitric oxide concentration significantly decreased in rats that received L-NAME alone, while co-treatment with MO and Lisinopril showed a significant increase in nitric oxide levels. Co-treatment with MO and Lisinopril significantly reduced malondialdehyde (MDA) concentrations in the cardiac and renal tissues, whereas L-NAME alone caused a significant increase in MDA concentration. The expressions of cardiac and renal caspase-3 significantly increased in L-NAME alone treated rats, while co-treatments with MO and Lisinopril significantly reduced the expressions of caspase-3. In conclusion, co-treatment with MO effectively reduced arterial pressure and indices of hypertension in rats, mitigated the oxidative stress and apoptosis induced by L-NAME. Therefore, the inclusion of MO seeds in hypertension management may serve as an effective remedy.
References
Abdel-Raheem, S. M. and Hassan, E. H. (2021). Effects of dietary inclusion of moringa oleifera leaf meal on nutrient digestability, rumen fermentation ruminal enzyme activities and growth performance of buffalo calves. Saudi J. Biol. Sci. 28: 4430-4436.
Aguwa, U. S., Eze, C. E., Obinwa, B. N., Okeke, S. N., Onwuelingo, S. F., Okonkwo, D. I., Ogbuokiri, D. K., Agulanna, A. E., Obiesie, I. J. and Umezulike, A. J. (2020). Comparing the effect of methods of rat euthanasia on the brain of Wistar rats: cervical dislocation, chloroform inhalation, diethyl ether inhalation and formalin inhalation. J Adv. Med. Med. Res. 32(17): 8-16.
Aremu, O. O., Oyedeji, A. O., Oyedeji, O. O., Nkeh-Chungag, B. N. and Rusike, C. R. S. (2019). In vitro and in vivo antioxidant properties of taraxacum officinale in Nω-nitro-l-arginine methyl ester-induced hypertensive rats. Antioxidants, 8: 309. https://dor.org/10.3390/antiox8080309.
Ayala, A., Muñoz, M. F. and Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 360438. doi: 10.1155/2014/360438.
Aydogdu, N., Yavuz, O. Y., Tastekin, E., Tayfur, P., Kaya, O. and Kandemir, N. (2019). The effects of Irisin on Nω-nitro-l-arginine methyl ester hydrochloric-induced hypertension in rats. Balkan Med. J. 36: 337-346.
Avwioro, O. G. (2002). Histochemistry and Tissue Pathology: Principles and techniques 1st ed, Claverianum Centre. ISBN 978- 35627-9-7.
Bergin, P., Leggett, A., Cardwell, C. R., Woodside, J. V., Thakkinstian, A., Maxwell, A. P. and McKay, G. J. (2021). The effects of vitamin E supplementation on malondialdehyde as a biomarker of oxidative stress in haemodialysis patients: a systematic review and meta-analysis. BMC Nephrol. 22: 126. https://doi.org/10.1186/s12882-021-02328-8
Beutler, E., Duron, O., and Kelly, B. M. (1963). Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882-888
Boe, A. E., Eren, M., Murphy, S. B., Kamide, C. E., Ichimura, A., Terry, D., McAnally, D., Smith, L. H., Miyata, T. and Vaughan, D. E. (2013). Plasminogen activator inhibito-1 antagonist TM5441 attenuate Nω-nitro-l-arginine methyl ester-induced hypertension and vascular senescence. Circulation. 128: 2318-2324.
Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E. and Boise, L. H. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14: 32. https://doi.org/10.1186/1471-2121-14-32
Chia, T. Y., Murugaiyah, V., Khan, N. A., Sattar, M. A., Abdulla, M. H., Johns, E. J., Ahmad, A., Hassan, Z., Kaur, G., Mei, H. Y., Ahmad, F. U. and Akhtar, S. (2021). Inhibition of L-NAME-induced hypertension by combined treatment with apocynin and catalase: the role of Nox 4 expression. Physiol. Res. 70(1): 13-26. doi: 10.33549/physiolres.934497.
Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S. and Minciullo, P.L. (2023). Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules. 28: 5979. https://doi.org/10.3390/molecules28165979
Dälken, B., Giesübel, U., Knauer, S., Knauer, S. K. and Wel, W. S. (2006). Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ. 13: 576–585. https://doi.org/10.1038/sj.cdd.4401773
Efosa, J. O., Omage, K. and Azeke, M. A. (2023). Drying temperature affects the hypolipidemic, antioxidant, and antihypertensive potential of Hibiscus sabdarinaffa calyx in rats induced with L-NAME. Toxicol. Reports. 11: 177-188. https://doi.or/10.1016/j.toxorep.2023.09.005
El-Kassas, S., Aljahdali, N., Abdo, S. E., Alaryani, F. S., Moustafa, E. M., Mohamed, R., Abosheashaa, W., Abdulrauf, F., Helal, M. A., Shafi, M. E., El-Saadony, M. T., El-Naggar, K. and Conte-Junior, C. A. (2022). Moringa oleifera leaf powder dietary inclusion differentially modulates the antioxidant inflammatory and histopathological responses of normal and aeromonas hydrophila – infected mono-sex nile tilapia (Oreochromis niloticus). Front. Vet. Sci. 9: 918933. Doi:10.3389/Fvets.2022.918933.
Emam, M. A., Shourbela, R. M., El-Hawarry, W. E., Abo-Kora, S. Y., Gad, F. A., El-Latif, A. M. A. and Dawood, M. A. O. (2022). Effects of moringa oleifera aqueous extract on the growth performance, blood characteristics, and histological features of gills and livers in Nile tilapia. Aqua. Fish. https://doi.org/10.1016.j.aaf.2021.12.011.
Gardiner, S. M., Compton, A. M., Bennett, T., Palmer, R. M., Moncada, S. (2010). Control of regional bloodflow by endothelium-derived nitric oxide. Hypertension. 15: 486–492.
Garrido, C., Galluzzi, L., Brunet, M. Puig, P. E., Didelot, C. and Kroemer, G. (2006). Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13: 1423–1433. https://doi.org/10.1038/sj.cdd.4401950
Ghasi, S., Nwobodo, E. and Ofili, J. O. (2000). Hypocholesterolemic effects of crude extract of leaf of moringa oleifera Lam in high-fat diet fed wistar rats. J. Ethnopharmacol. 69: 21-25.
Gogebakan, A., Talas, Z. S., Ozdemir, I. and Sahna E. (2012). Role of propolis on tyrosine hydroxylase activity and blood pressure in nitric oxide synthase-inhibited hypertensive rats. Clinical and Experimental Hypertension. 34: 424–428. doi: 10.3109/10641963.2012.665542
Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.
Jollow, D. J., Mitchell, J. R., Zampaglione, N. and Gillette, J. R. (1974). Bromobenzeneinduced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 11(3): 151–69.
Król, M. and Kepinska, M. (2020). Human Nitric Oxide Synthase-Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Int. J. Mol. Sci. 22: 56. doi: 10.3390/ijms22010056.
Leo, M. D., Kandasamy, K., Subramani, J., Tandan, S. K. and Kumar, D. (2015). Involvement of inducible nitric oxide synthase and dimethyl arginine dimethyl amino hydrolase in attenuate Nω-nitro-l-arginine methyl ester-induced hypertension. Cardiovas. Pathol. 24: 49-55.
Li, B., He., Lei, S., Zhou, F., Zhang, N., Chen, Y., Wang, Y., Su, J., Yu, J., Li, L., Zheng, X., Luo, R., Kolodynska, D., Xiong, S., Lv, G. and Chen, S. (2020). Hypertensive rats treated chronically with Nω-nitro-l-arginine methyl-ester (L-NAME) induced disorder of hepatic fatty acid metabolism and intestinal pathophysiology. Front. Pharmacol. 10:1677.doi:10.3389/fphar.2019.01677.
Lu, W., Wang, J., Zhang, H.J., Wu, S. G. and Qi, G. H. (2016). Evaluation of moringa oleifera leaf in laying hens: effects on laying performance, egg quality, plasma biochemistry and organ histopathological indices. Italian J. Anim. Sci. 15: 658-665.
Ma, J., Li, Y., Yang, X., Liu, K., Zhang, X., Zuo, X., Ye, R., Wang, Z., Shi, R., Meng, Q and Chen, X. (2023). Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8: 16. https://doi.org/10.1038/s41392-023-01430-7
Mansour, A. T., Miao, L., Espinosa, C., Garcia-Beltran, J. M., Francisco, D. C. C. and Esteban, M. A. (2018). Effects of dietary inclusion of moringa oleifera leaves on growth and some systemic and mucosal parameters of seabream. Fish Physiol. Biochem. Https://doi.org/10.1007/s10695-018-0515-z.
Metkar, S. S., Wang, B., Ebbs, M. L., Kim, J. H., Lee, Y. J., Raja, S. M. and Froelich, C. J. (2003). Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J. Cell Biol. 160(6): 875-85. doi: 10.1083/jcb.200210158
Moreno-Mendoza, Y., Lopez-Villareal, K. D., Hernandez-Martinez, C. A., Rodriquez-Tovar, L. E., Herandez-Coronado, A. C., Soto-Dominquez, A., Hume, M. E. and Mendez-Zamora, G. (2021). Effect of moringa leaf powder and agave inulin on performance, intestinal morphology, and meat yield of broiler chickens. Poult. Sci. 100: 738-745.
Olaleye, S. B., Adaramoye, O. A., Erigbali, P. P. and Adeniyi, O. S. (2007). Lead exposure increases oxidative stress in the gastric mucosa of HCl/ethanol-exposed rats. World J. Gastroenterol. 13: 5121–5126.
Omóbòwálé, T. O., Oyagbemi, A. A., Folasire, A. M., Ajibade, T. O., Asenuga, E. R., Adejumobi, O. A., Ola-Davies, O. E., Oyetola, O., James, G., Adedapo, A. A. and Yakubu, M. A.. (2018) Ameliorative effect of gallic acid on doxorubicin-induced cardiac dysfunction in rats. J. Basic Clinic. Physiol. Pharmacol. 29: 19-27.
Oyagbemi, A. A., Adejumobi, O. A., Jarikre, T. A., Ajani, O. S., Asenuga, E. R., Gbadamosi, I. T., Adedapo, A. D. A., Aro, A. O., Ogunpolu, B. S., Hassan, F. O., Falayi, O. O., Ogunmiluyi, I. O., Omobowale, T. O., Arojojoye, O. A., Ola-Davies, O. E., Saba, A. B., Adedapo, A. A., Emikpe. B. O., Oyeyemi, M. O., Nkadimeng, S. M., McGaw, L. J., Kayoka-Kabongo, P. N., Oguntibeju, O. O. and Yakubu, M. A. (2021) Clofibrate, a Peroxisome Proliferator-Activated Receptor-Alpha (PPARα) Agonist, and Its Molecular Mechanisms of Action against Sodium Fluoride-Induced Toxicity. Biol. Trace Elem. Res. doi: 10.1007/s12011-021-02722-1.
Pal, G., Mishra, H., Suvvari, T., Tanwar, A., Ghosh, T., Verma, P., Pal, A., Patial, K., Mahapatra, C., Amanullah, N. A., Shukoor, S. A., Kamal, S. and Rohil, V. (2023). Oxidative stress in wistar rats under acute restraint stress and its modulation by antioxidants and nitric oxide modulators. Cureus 15: e43333. doi:10.7759/cureus.43333
Panthiya, L., Tocharus, J., Onsa-ard, A., Chaichompoo, W., Suksamrarn, A. and Tocharus, C. (2022). Hexahydrocurcumin ameliorates hypertensive and vascular remodeling on L-NAME-induced rats. BBA-Mol. Basis Dis. 1868: 166317.
Parasuraman, S., Raveendran, R. and Kesavan, R. (2010). Blood sample collection in small laboratory animals. J. Pharmacol. Pharmacotherapeut.1(2): 87-93. doi: 10.4103/0976-500X.72350
Redza-Dutordoir, M. and Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica. 1863: 2977-2992.
Rodríguez-González, J. and Gutiérrez-Kobeh, L. (2024). Apoptosis and its pathways as targets for intracellular pathogens to persist in cells. Parasitol. Res. 123: 60. https://doi.org/10.1007/s00436-023-08031-x
Sabanna Patil, K., and Ratan Wadekar, R. (2021). Lipid Peroxidation: A Signaling Mechanism in Diagnosis of Diseases. IntechOpen. doi: 10.5772/intechopen.99706
Silva, G. C., Abbas, M., Khemais-Benkhiat, S., Burban, M., Ribeiro, T. P., Toti, F., Idris-Khodja, N., Côrtes, S. F. and Schini-Kerth,Replicative V. B. (2017). senescence promotes prothrombotic responses in endothelial cells: Role of NADPH oxidase- and cyclooxygenase-derived oxidative stress, Exp. Gerontol. 93: 7-15. https://doi.org/10.1016/j.exger.2017.04.006.
Stohs, S. J. and Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad. Biol. Med. 18(2): 321-36. doi: 10.1016/0891-5849(94)00159-h
Sultana, N., Das, N. G., Kabir, M. A., Deb, G. K. and Islam, M. T. (2021). Metabolic benefit of bulls being fed moringa leaves twigs and branches as a major concentrate ingredient. Front. Anim. Sci. doi:10.3389/Fanim.2021.712919.
Tutubalang, K., Sebola, N. A., Mokoboki, H. K., Mosettle, K. Q., Manyeula, F. and Mabelebele, M. (2022). Inclusion of moringa oleifera leaf meal in the diet of locally bred chickens: effects on growth performance semen and hatchability trait. J. Appl. Anim. Res. 50: 239-245.
Varshney, R. and Kale, R. K. (1990). Effect of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. Int. J. Rad. Biol. 58: 733–743.
Walters, J., Pop, C., Scott, F. L., Drag, M., Swartz, P., Mattos, C., Salvesen, G. S. and Clark, A. C. (2009).A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem. J. 424(3): 335-45. doi: 10.1042/BJ20090825.
Wolff S.P. (1994). Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydrogen peroxides. Meth. Enzymol. 233: 182-189.
Zaneb, K. H., Masuod, S., Yousef, M. S., Rehman, H. F. and Rehman, H. (2017). Effect of moringa oleifera leaf powder supplementation on growth performance and intestinal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 101: 114-121.
Zhou, X. and Frohlich, E. D. (2007), Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR. Med. Chem. 3: 61-65.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nigerian Journal of Physiological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.