Neurobehavioural and Histological Study of the Effects of Low-Dose and High-Dose Vanadium in Brain, Liver and Kidney of Mice
DOI:
https://doi.org/10.54548/njps.v38i1.8Abstract
Vanadium is a ubiquitous transition metal that has been generating contrasting research interest. Therapeutically, vanadium possess antidiabetic, antitumor, antiparasitic and even neuroprotective activities. On the flip side, vanadium has been reported to cause multisystemic toxicities with a strong predilection for the nervous system. Despite several reports on potential benefits of low-dose vanadium (LDV) and toxic effects of high-dose vanadium (HDV), there are no comparative studies done thus far. This study therefore explored the comparative effects of LDV and HDV exposure in mice during postnatal development. A total of nine (9) nursing mice were used in this study; with three nursing mice and their pups (n = 12 pups per group) randomly assigned to each of the three test groups. The nursing dam were given intraperitoneal (i.p) injection of vanadium at 0.15mg/kg and 3mg/kg for LDV and HDV respectively, and subseqently to the pups from postnatal day (PND) 15 till sacrifice on PND 90. We discovered that neurodevelopmental motor function test of mice-pups exposed to LDV here showed improved motor development, muscular strength and memory capacities whereas HDV led to motor function impairment, reduced muscular strength and memory capacities. LDV-exposed mice showed mild histological lesions in cerebral cortex whereas high-dose showed distinct histological lesions in different parts of the brain ranging from cerebellar Purkinje neuronal pathology (central chromatolysis), pyramidal neuronal loss in CA1 region, architectural distortion as well as fewer neurons in olfactory bulb. We saw mild lesions with LDV in both liver and kidney, however, with HDV exposure, there was diffuse hepatocellular vacuolar degeneration and congestion of blood vessels in liver, shrinkage of renal glomerulus and degenerated epithelial cells of kidney. Conclusively, beneficial effect of vanadium is proven as it facilitated body weight gain which translate in organ weight at low-dose, while high-dose caused decreased neurobehaviour and histological lesions.
References
Amorim, F.A., Welz, B., Costa, A.C., Lepri, F.G., Vale, M.G. and Ferreira, S.L. (2007). Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. Talanta. 30;72(2):349-59. doi: 10.1016/j.talanta.2006.12.015. Epub 2007 Jan 10. PMID: 19071624.
Audu, R.S., Olopade, F.E., Ladagu, A.D., Hassan, S.U., Yahaya, A. and Olopade, J.O. (2020). Behavioral and Histomorphological Changes in the Developing Brains of Vanadium-Exposed Mice Pups: Protective Role of Minocycline. Arch. Bas. App. Med. 8: 95 – 102.
Azeez, I.A., Olopade, F., Laperchia, C., Andrioli, A., Scambi, I., Onwuka, S.K., Marina, B. and Olopade, J.O. (2016). Regional Myelin and Axon Damage and Neuroinflammation in the Adult Mouse Brain After Long-Term Postnatal Vanadium Exposure. Journal of Neuropathology and Experimental Neurology. 2016 Sep;75(9):843-854. DOI: 10.1093/jnen/nlw058. PMID: 27390101.
Bailey, S.A., Zidell, R.H and Perry, R.W. (2004). Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicologic Pathology. 32(4):448-66. doi: 10.1080/01926230490465874. PMID: 15204968.
Dyer, A. and De Butte, M. (2022). Neurobehavioral effects of chronic low-dose vanadium administration in young male rats. Behavioural Brain Research 419:113701. doi: 10.1016/j.bbr.2021.113701. Epub 2021 Dec 2. PMID: 34863808.
Facchini, D.M., Yuen, V.G., Battell, M.L., McNeill, J.H. and Grynpas, M.D. (2006). The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone. 38(3):368-77. doi: 10.1016/j.bone.2005.08.015. Epub 2005 Oct 26. PMID: 16256449.
Fatola, O.I., Olaolorun, F.A., Olopade, F.E. and Olopade, J.O. (2019). Trends in vanadium neurotoxicity. Brain Res Bull. 145:75-80. doi: 10.1016/j.brainresbull.2018.03.010. Epub 2018 Mar 22. PMID: 29577939.
Feather-Schussler, D.N. and Ferguson, T.S. (2016). A Battery of Motor Tests in a Neonatal Mouse Model of Cerebral Palsy. J Vis Exp. (117):53569. doi: 10.3791/53569. PMID: 27842358; PMCID: PMC5226120.
Folarin, O., Olopade, F., Onwuka, S. and Olopade, J. (2016). Memory Deficit Recovery after Chronic Vanadium Exposure in Mice. Oxidative Medicine and Cellular Longevity. doi: 10.1155/2016/4860582. Epub 2016 Jan 19. PMID: 26962395; PMCID: PMC4745327.
Folarin, O.R., Snyder, A.M., Peters, D.G., Olopade, F., Connor, J.R. and Olopade, J.O. (2017). Brain Metal Distribution and Neuro-Inflammatory Profiles after Chronic Vanadium Administration and Withdrawal in Mice. Front Neuroanat. 11:58. doi: 10.3389/fnana.2017.00058. PMID: 28790895; PMCID: PMC5524677.
French, R.J. and Jones, P.J. (1993). Role of vanadium in nutrition: metabolism, essentiality and dietary considerations. Life Sci. 52(4):339-46. doi: 10.1016/0024-3205(93)90146-t. PMID: 8421433.
Garcia, G.B., Biancardi, M.E. and Quiroga, A.D. (2005). Vanadium (V)-induced neurotoxicity in the rat central nervous system: a histo-immunohistochemical study. Drug Chem Toxicol. 28(3):329-44. doi: 10.1081/dct-200064496. PMID: 16051558.
García, G.B., Quiroga, A.D., Stürtz, N., Martinez, A.I. and Biancardi, M.E. (2004). Morphological alterations of central nervous system (CNS) myelin in vanadium (V)-exposed adult rats. Drug Chem Toxicol. 27(3):281-93. doi: 10.1081/dct-120037747. PMID: 15478949.
Gilbert, T.T., Olopade, F.E., Mustapha, O.A., Folarin, O.R. and Olopade, J.O. (2020). Histological and immunohistochemical study of pineal and pituitary glands of the greater cane rat (Thryonomys swinderianus, Temminck 1827). Arch. Bas. App. Med. 8: 137 – 142.
Goc, A. (2014). Biological activity of vanadium compounds. D Central European Journal of Biology. 1(3) 314–332. doi: 10.2478/s11535-006-0029-z.
Huang, M., Wu, Y., Wang, N., Wang, Z., Zhao, P. and Yang, X. (2014). Is the hypoglycemic action of vanadium compounds related to the suppression of feeding? Biol Trace Elem Res. 157(3):242-8. doi: 10.1007/s12011-013-9882-6. Epub 2014 Jan 22. PMID: 24446192.
Igado, O.O., Andrioli, A., Azeez, I.A., Girolamo, F., Errede, M., Aina, O.O., Glaser, J., Holzgrabe, U., Bentivoglio, M. and Olopade, J.O. (2020). The ameliorative effects of a phenolic derivative of Moringa oleifera leave against vanadium-induced neurotoxicity in mice. IBRO Rep. 9:164-182. doi: 10.1016/j.ibror.2020.07.004. PMID: 32803016; PMCID: PMC7417907.
Jaiswal, M.R. and Kale, P.P. (2019). Mini review-vanadium-induced neurotoxicity and possible targets. Neurol Sci. 41(4):763-0768. doi: 10.1007/s10072-019-04188-5. Epub 2019 Dec 14. PMID: 31838631.
León, I.E., Butenko, N., Di Virgilio, A.L., Muglia, C.I., Baran, E.J., Cavaco, I. and Etcheverry, S.B. (2014). Vanadium and cancer treatment: antitumoral mechanisms of three oxidovanadium (IV) complexes on a human osteosarcoma cell line. J Inorg Biochem. 134:106-17. doi: 10.1016/j.jinorgbio.2013.10.009. Epub 2013 Oct 23. PMID: 24199985.
Li, H., Zhou, D., Zhang, Q., Feng, C., Zheng, W., He, K. and Lan, Y. (2013). Vanadium exposure induced neurobehavioral alternations among Chinese workers. Neurotoxicology 36 49–54 doi:10.1016/j.neuro.2013.02.008.
Mameli, O., Caria, M.A., Melis, F., Solinas, A., Tavera, C., Ibba, A., Tocco, M., Flore, C. and Sanna Randaccio, F. (2001). Neurotoxic effect of lead at low concentrations. Brain Res Bull. 55(2):269-75. doi: 10.1016/s0361-9230(01)00467-1. PMID: 11470326.
Morris, R.G.M. (1993). “An attempt to dissociate ‘spatial-mapping’ and ‘working-memory’ theories of hippocampal function,” in Neurobiology of the Hippocampus, W. Seifert, Ed., pp. 405–432, Academic Press, New York, NY, USA.
Moskalyk, R.R. and Alfantazi, A.M. (2003). Processing of vanadium: a review. Miner. Engineer., Vol. 16, pp. 793–805. doi.org/10.1016/S0892-6875(03)00213-9.
Mustapha, O., Oke, B., Offen, N., Sirén, A.L. and Olopade, J. (2014). Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin. Environ Toxicol Pharmacol. 38(1):98-111. doi: 10.1016/j.etap.2014.05.001. Epub 2014 May 10. PMID: 24927405.
Nielsen, F.H. and Uthus, E.O. (1990). The essentiality and metabolism of vanadium, In: N.D. Chasteen (Ed.): Vanadium in Biological Systems, Kluwer Academic Publishers. Dordrecht, The Netherlands, pp. 51–62.
Novotny, L. and Kombian, S.B. (2014). Vanadium: Possible Use in Cancer Chemoprevention and Therapy. Journal of Cancer Research Updates, 3, 97-102. https://doi.org/10.6000/1929-2279.2014.03.02.3.
Omayone, T.P., Salami, A.T., Olopade, J.O. and Olaleye, S.B. (2020). Attenuation of ischemia-reperfusion-induced gastric ulcer by low-dose vanadium in male Wistar rats. Life Sci. 259:118272. doi: 10.1016/j.lfs.2020.118272. Epub 2020 Aug 12. PMID: 32800836.
Omayone, T., Salami, A.T., Odukanmi, A.O., Olopade, J.O. and Olaleye, S.B. (2020). Dose-dependent changes in Haematological and Serum Biochemical Variables in Rats Exposed to Sodium Metavandate in Male Wistar Rats. Niger J Physiol Sci. 35(2):147-153. PMID: 34009207.
Olopade, J.O. and Connor, J.R. (2011). Vanadium and Neurotoxicity: A Review. Curr Top Toxicol 7:33-39.
Olopade, J.O., Fatola, I.O. and Olopade, F.E. (2011). Vertical administration of vanadium through lactation induces behavioural and neuromorphological changes: protective role of vitamin E. Niger J Physiol Sci. 26(1):55-60. PMID: 22314988.
Pessoa, J.C., Garribba, E., Santos, M.F.A. and Santos-Silva, T. (2015). Vanadium and proteins: uptake, transport, structure, activity and function. Coordination Chemistry Reviews. 301-302, 49-86. https://doi.org/10.1016/j.ccr.2015.03.016.
Ramanadham, S., Heyliger, C., Gresser, M.J., Tracey, A.S. and McNeill, J.H. (1991). The distribution and half-life for retention of vanadium in the organs of normal and diabetic rats orally fed vanadium (IV) and vanadium(V). Biol Trace Elem Res. 30(2):119-24. doi: 10.1007/BF02990348. PMID: 1723884.
Rehder, D. (2013). Vanadium. Its role for humans. Met Ions Life Sci. 13:139-69. doi: 10.1007/978-94-007-7500-8_5. PMID: 24470091; PMCID: PMC7120733.
Rojas, E., Herrera, L.A., Poirier, L.A. and Ostrosky-Wegman, P. (1999). Are metals dietary carcinogens? Mutat. Res., Vol. 443, pp. 157–181.
Rozzo, C., Sanna, D., Garribba, E., Serra, M., Cantara, A., Palmieri, G. and Pisano, M. (2017). Antitumoral effect of vanadium compounds in malignant melanoma cell lines. J Inorg Biochem. 174:14-24. doi: 10.1016/j.jinorgbio.2017.05.010. Epub 2017 May 22. PMID: 28558258.
Sabbioni, E., Marafante, E., Amantini, L., Ubertalli, L. and Birattari, C. (1978). Similarity in metabolic patterns of different chemical species of vanadium in the rat. Bioinorganic chemistry, 8:503–515. https://doi.org/10.1016/0006-3061(78)80004-0.
Sanchez, D.J., Colomina, M.T. and Domingo, J.L. (1998). Effects of vanadium on activity and learning in rats. Physiol Behav. 63(3):345-50. doi: 10.1016/s0031-9384(97)00433-2. PMID: 9469725.
Semiz, S. and McNeill, J.H. (2002). Oral treatment with vanadium of Zucker fatty rats activates muscle glycogen synthesis and insulin-stimulated protein phosphatase-1 activity. Mol Cell Biochem. 236(1-2):123-31. doi: 10.1023/a:1016116700632. PMID: 12190110.
Stern, A., Yin, X., Tsang, S.S., Davison, A. and Moon, J. (1993). Vanadium as a modulator of cellular regulatory cascades and oncogene expression. Biochem Cell Biol. 71(3-4):103-12. doi: 10.1139/o93-018. PMID: 8398067.
Treviño, S., Díaz, A., Sánchez-Lara, E., Sanchez-Gaytan, B.L., Perez-Aguilar, J.M. and González-Vergara, E. (2019). Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res. 188(1):68-98. doi: 10.1007/s12011-018-1540-6. Epub 2018 Oct 22. PMID: 30350272; PMCID: PMC6373340.
Usende, I.L., Leitner, D.F., Neely, E., Connor, J.R. and Olopade, J.O. (2016). The Deterioration Seen in Myelin Related Morphophysiology in Vanadium Exposed Rats is Partially Protected by Concurrent Iron Deficiency. Niger J Physiol Sci. 31(1):11-22. PMID: 27574759.
Wilk, A., Wiszniewska, B., Szypulska-Koziarska, D., Kaczmarek, P., Romanowski, M., Różański, J., Słojewski, M., Ciechanowski, K., Marchelek-Myśliwiec, M. and Kalisińska, E. (2017). The Concentration of Vanadium in Pathologically Altered Human Kidneys. Biol Trace Elem Res. 180(1):1-5. doi: 10.1007/s12011-017-0986-2. Epub 2017 Mar 9. PMID: 28275931; PMCID: PMC5610659.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Nigerian Journal of Physiological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.