Abstrakt
Background: Resistance of Klebsiella species to conventional antibiotics is often implicated in increasing nosocomial infections, and is due in part to enzymatic hydrolysis either constitutively and/or inductively. Resistance plasmid factors readily spread mostly through Gram-negative bacterial isolates through conjugative plasmids. This study investigated the presence of extended spectrum beta lactamases (ESBL), profiles of plasmids detected, and resistance to conventional antimicrobial agents among clinical isolates of Klebsiella species from three
sources.
Method: Seventy Gram-negative bacteria and lactose fermenters from urine, wounds and sputum specimens from three hospitals in the South West region of Nigeria were studied after identification with microbial identification system. Antibiogram was determined using modified Kirby-Bauer disc diffusion method. Phenotypic detection of ESBL-production was carried out using double-disk synergy tests (DDST). Plasmid DNA were extracted by alkaline lysis method, electrophoresed, viewed by a UV-trans-illuminator, with plasmid size and number determined, following standard protocols.
Results: Twenty-nine (29) or 41% of the seventy clinical isolates were confirmed as Klebsiella species distributed as: Klebsiella pneumoniae 89.66% (26/29); Klebsiella oxytoca 6.89% (2/29) and Klebsiella ozanae 3.45% (1/29). Among the K. pneumoniae isolates, 13 (50%) were from urine, 8 (30.77%) from wounds and 5 (19%) from sputum. Multidrug resistance was observed with the isolates; as 28 (96.5%) were resistant to at least four (4) different classes of antibiotics. Among the 29 isolates, 14 (48.3%) Klebsiella species were ESBL-producers while 15 (51.7%) were non-ESBL producers. The ESBL-producers showed higher antibiotic resistance compared to non-ESBL producers, particularly with respect to β-lactam antibiotics. Plasmid DNA, with sizes range of 0.78 -
23 kbp were detected in 17 (58.62%) of the isolates.
Conclusion: Multidrug resistance (MDR) phenomenon was observed with Klebsiella species particularly among the ESBL-producers harbouring high-molecular weight plasmids. There is need for routine ESBL-production surveillance and the rational choice of antibiotics for infection management, reduction and containment of spread of antibiotic resistance in clinical settings.
Keywords: Klebsiella species, ESBL-producers, plasmids, antibiotic resistance
Résumé
Contexte: La résistance des espèces Klebsiella aux antibiotiques conventionnels est souvent impliquée dans l’augmentation des infections nosocomiales, et est due en partie à l’hydrolyse enzymatique soit de manière constitutive et / ou inductive. Les facteurs de résistance plasmidiques se propagent facilement principalement à travers des isolats bactériens Gram-négatifs par des plasmides conjugatifs. Cette étude a examiné la présence de bêta-lactamases à spectre étendu (BLSE), les profils de plasmides détectés et la résistance aux agents antimicrobiens conventionnels parmi les isolats cliniques des espèces Klebsiella provenant de trois sources différentes.
Méthode: Soixante-dix fermenteurs de bactéries Gram-négatives et de lactose provenant d’échantillons d’urine, de plaies et d’expectorations provenant de trois hôpitaux de la région du sud-ouest du Nigéria ont été étudiés après identification avec un système d’identification microbienne. L’antibiogramme a été déterminé en utilisant la méthode de diffusion du disque de Kirby-Bauer modifiée. La détection phénotypique de la production de BLSE a été réalisée à l’aide de tests de synergie à double disque (TSDD). L’ADN plasmidique a été extrait par la méthode de lyse alcaline, soumis à l’électrophorèse, vu par un trans-illuminateur-UV, avec la taille et le nombre de plasmides déterminés, en suivant les protocoles standard
Résultats: Vingt-neuf (29) ou 41% des soixante-dix isolats cliniques ont été confirmés comme étant des espèces Klebsiella réparties comme: Klebsiella pneumoniae 89,66% (26/29); Klebsiella oxytoca 6,89% (2/29) et Klebsiella ozanae 3,45% (1/29). Parmi les isolats de K. pneumoniae, 13 (50%) provenaient d’urine, 8 (30,77%) de plaies et 5 (19%) d’expectorations. Une résistance aux médicaments multiple a été observée avec les isolats; parce que 28 (96,5%) étaient résistants à au moins quatre (4) classes différentes d’antibiotiques. Parmi les 29 isolats, 14 (48,3%) espèces Klebsiella étaient des producteurs-BLSE tandis que 15 (51,7%) étaient des non producteursBLSE. Les producteurs-BLSE ont montré une résistance aux antibiotiques plus élevée que les non producteurs-BLSE, en particulier en ce qui concerne les antibiotiques â-lactame. L’ADN plasmidique, avec des tailles allant de 0,78 à 23 kbp, a été détecté dans 17 (58,62%) des isolats.
Conclusion: Un phénomène de résistance aux médicaments multiple (MDR) a été observé avec les espèces Klebsiella, en particulier parmi les producteurs-BLSE hébergeant des plasmides de haut poids moléculaire. Il est nécessaire de surveiller systématiquement la production de BLSE et de choisir rationnellement les antibiotiques pour la gestion des infections, la réduction et l’endiguement de la propagation de la résistance aux antibiotiques en milieu clinique.
Mots clés: Espèces Klebsiella, producteurs-BLSE, plasmides, résistance aux antibiotiques
Correspondence: Dr. P.A. Idowu, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria. E-mail: igboyega@yahoo.com
Reference
Podschun R and Ullmann U. Klebsiella spp. As Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998; 11(4): 589-603.
Frandsen TH and Andersen LP. Spread/Outbreak of multidrug-resistant Klebsiella pneumonia in tertiary hospitals. Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.), 2013; 1905-1910.
Bauernfeind A, Petermüller C and Schneider R. Bacteriocins as tools in analysis of nosocomial Klebsiella pneumonia infections. J. Clin. Microbiol. 1981; 14: 15-19.
Hill HR, Hunt CE and Matsen JM. Nosocomial colonization with Klebsiella,type 26, in a neonatal intensive-care unit associated with an outbreak of sepsis, menigitism and necrotizing enterocolitis. J. Peds. 1974; 85(3): 415-419.
Araque M, Nieves B, Lauretti L and Rossiolini GM. Molecular basis of extended-spectrum beta-lactamases production in nosocomial isolates of Klebsiella pneumonia from Mérida, Venezuela. Int. J. Antimicrob. Agents. 2000; 15: 37-42.
Gray J and Omar N. Nosocomial infections in neonatal intensive care units in developed and developing countries: how can we narrow the gap? J Hospi Infect. 2012; 83: 193-195
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty second informational supplement update. CLSI document M100-S10. Clinical and Laboratory Standards Institute, Wayne, PA. 2010.
Paterson DL. Resistance in Gram-negative bacteria:Enterobacteriaceae. Am. J. Infect. Control. 2006; 34: 20-28.
Friedman C, Callery S, Jeanes A, Piaskowski P and Scott L. Best Infection Control Practices for patients with Extended Spectrum ß-Lactamase Enterobacteriacae, Intl. Infect. Cont. Council. 2005.
Parasakthi N, Vadivelu J, Ariffin H, et al. Epidemiology and molecular characterization of nosocomially transmitted multidrug-resistant Klebsiella pneumonia. Intl. J. Infect. Dis. 2000; 4(3): 123-128.
Fillipa N,Carricajo A, Grattard F et al. Outbreak of multidrug-resistant Klebsiella pneumoniae carrying qnrB1 and blaCTX-M15in a French intensive care unit. Annals of Intensive Care. 2013; 3: 18-21.
Winokur PL, Canton R, Casellas JM and Legakis N. Clin. Inf. Dis. 2001; 15 (2): 94-103.
Rapp RP and Urban C. Kleibsiella pneumoniae carbapenemases in enterobacteriaceae: History, evolution, and microbiology concerns. Pharmacother. 2012; 32(5): 399-407.
Snitkin ES, Zelazny AM, Thomas PJ and Stock F. NISC comparative sequencing program, Henderson D K, Palmore TN, Segre JA. Tracking a hospital outbreak of carbapenem-resistant Kleibsiella pneumonia with whole-genome sequencing. Sci Transl. Med. 2012;4: 148-116.
Maritn CM, Ikari NS, Zimmerman J and Waitz A. A virulent nosocomial Klebsiella with a transferable R factor for gentamicin: emergence and suppression. J. Infec. Dis . 1971; 124: S24-s29.
Asensio A, González-Diego P, Baquero F et al. Outbreak of a multiresistant Klebsiella pneumonia strain in an intensive care unit: Antibiotic use as risk factor for colonization and infection. Clin. Infect. Dis. 2000; 30: 55-60.
Akinduti PA, Oluwaseun E, Motayo BO and Adeyakinu AF. Emerging Multidrug resistant Ampc Beta-Lactamase and Carbapenemase enteric Isolates in Abeokuta. Nature and Science. 2012; 10(7): 70-74.
Motayo BO,Akinduti PA, Adeyakinu AF et al. Antibiogram and plasmid profiling of carbapenemase and extended spectrum Beta-lactamase (ESBL) producing Eschrrichia coli and Klebsiella pneumoniae in Abeokuta, South western, Nigeria. Afr Health Sci. 2013; 13(4): 1091-1097
Bauer AW, Kirby WM, Sherris JC and Truck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966;45(4): 493-496.
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Twenty second informational supplement update. Wayne, PA. 2014, CLSI document M100-S24.
Therrien C and Levesque RC. Molecular basis of antibiotic resistance and ß-lactamase inhibition by mechanism-based inactivators: perspectives and future directions; FEMS Microbiol. Rev. 2000; 24(3): 251-262.
Sambrook J, Maniatis T and Fritsch ET. Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 1982.
Kim YK, Pai H, Lee HJ, Park SE and Choi EH. Bloodstream infections by ESBL producing Escherichia coli and Klebsiella pneumonia in Children: Epidemiology and Clinical outcome. Antimicrob Agents Chemother. 2002; 46: 1481-1491.
Nordmann P,Cuzon G and Naas T. The real threat of Klebsiella pneumonia carbapenemase producing bacteria. Lancet Infectious Dis. 2009; 9(4) 228-236.
Tonkic M and Goic-Barisic I. Prevalence and antimicrobial resistance of extended spectrum ß-lactamases producing Escherichia coli and Klebsiella pneumoniae strains isolated in a university hospital in Spliit, Croatia. Int. Microbiol. 2005; 8(2): 119-124.
El-Khizzi NA and Bakheshuain SM. Prevalence of Extended-Spectrum Beta-lactamase among Enterobacteriaceae isolated from blood culture in a Tertiary Care Hospital. Saudi Med. J. 2006; 27(1): 37-40.
Tsuji A, Kobayashi I,Oguri T, Inoue M, Yabuuchi E and Goto S. An epidemiological study of the susceptibility and Frequency of multiple-drug-resistant strains of Pseudomonas aeruginosa isolated at medical institutes nationwide in Japan. J. Infect. Chemother. 2005; 11: 64.
Okonko IO, Soleye FA, Amusan TA, Ogun AA, Ogunnusi TA and Ejembi J.Incidence of Multi-Drug Resistance (MDR) Organisms in Abeokuta, South western Nigeria. Global J. Pharmacol. 2009; 3(2): 69-80.
Janda JM and ABBOTT SL. The Genera Klebsiella and Raoultella. The Enterobacteria. Washington, USA: ASM Press. 2006; (2nd ed., pp. 115-129).
Olowe OA, Oladipo GO, Makanjuola OA and Olaitan JO. Prevalence of extended spectrum ß-lactamases (ESBLs) carrying genes in Klebsiella spp. From clinical samples at Ile Ife, South Western Nigeria. Int. J. Pharm. Med. & Bio. Sc. 2012; 1(2): 12.
Jett BD and Ritchie DJ In vitro activities of various ß-lactam antimicrobial agents against clinical isolates of Escherichia coli and Klebsiella spp resistant to oxyimino cephalosporins. Antimicrob. Agents Chemother. 1995: 39 (5) 1187-1190.
Okesola OA and Oni AA. Prevalence of extended-spectrum ß-lactamase producing Klebsiella in a tertiary care hospital in South West Nigeria. Int. J. Pharm. Biomed. Sci. 2012; 3(4): 148-151.
Babypadmini S and Appalarafu B. ESBLs in urinary isolates of E. coli and Klebsiella pneumonia – prevalence and susceptibility pattern in a tertiary care hospital. Ind. J. Med. Microbiol. 2004; 22:172.
Iroha IR, Egwu OA, Ngozi AT, Chidiebube NA and Chika EP. Extended Spectrum Beta-Lactamase (ESBL) Mediated Resistance to Antibiotics among Klebsiella pneumonia in Enugu Metropolis. Maced. J. Med. Sci. 2009; 2: 196- 199.
Adenipekun EO, Aibinu IE, Daini OA et al. Occurrence of ß-lactamase resistance among Isolates from Cancer patients in Lagos, Nigeria. Researcher. 2009; 1(6):1-6.
Effah CY, Sun, T, Liu S. et al. Klebsiella pneumonia: an increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020; 19(1). https://doi.org/10.1186/s12941-019-0343-8.
Nester EW, Anderson DG, Roberts CE, Roberts CE, Pearsall NN and Nester MT. Microbiology: A human perspective. Fourth edition. McGraw Hill Companies Inc., New York,USA. 2004; pp 691-698.
Karbasizaed V, Badami N and Emtiazi G.Antimicrobial, heavy metal resistance and plasmid profile of coliforms isolated from nosocomial infections in a hospital in Isfahan. Iran. Afr. J. Biotechnol. 2003; 2(10): 379-383.
Podschun R, Heineken P, Ullmann U and Sonntag HG. Comparative Investigations of Klebsiella Species of Clinical Origin: Plasmid Patterns, Biochemical Reactions, Antibiotic Resistance and Serotypes. Medical Microbiology, Infectious Diseases, Virology, Parasitology. 1986; 263(3): 335-345
Sirot D. Extended- spectrum plasmid mediated ß-lactamases in the 21st Century:Antimicrob. Agents and Chemother. 2001; 32: 2227-2238.
Bradford PA. Extended-spectrum Beta-Lactamases in the 21st Century: Antimicrob. Agents and Chemother. 2001; 32: 2227-2238.
Mthembu, MS. The usefulness of multiple antibiotic resistance (MAR) indexing technique in differentiating faecal coliform bacteria from different sources. Thesis (Msc) University of Zululand; 2008.
Krumperman, PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of foods. Applied Environ. Microbiol. 1983; 46: 165-170.
Osundiya OO, Oladele RO, Oduyebo OO. Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella isolates in Lagos University Teaching Hospital Afr. J. Clin. Exper. Microbiol. 2013; 14(3): 164-168.